

 sphinx-quickstart on Mon Mar 1 09:26:26 2021.
You can adapt this file completely to your liking, but it should at least
contain the root toctree directive.

Welcome to ElegantRL!

[image: _images/logo.png]
 [https://github.com/AI4Finance-Foundation/ElegantRL]ElegantRL [https://github.com/AI4Finance-Foundation/ElegantRL] is an open-source massively parallel framework for deep reinforcement learning (DRL) algorithms implemented in PyTorch. We aim to provide a next-generation framework that embraces recent breakthroughs, e.g., massively parallel simulations, ensemble methods, population-based training.

ElegantRL features strong scalability, elasticity and lightweightness, and allows users to conduct efficient training on either one GPU or hundreds of GPUs:

	Scalability: ElegantRL fully exploits the parallelism of DRL algorithms at multiple levels, making it easily scale out to hundreds or thousands of computing nodes on a cloud platform, say, a SuperPOD platform with thousands of GPUs.

	Elasticity: ElegantRL can elastically allocate computing resources on the cloud, which helps adapt to available resources and prevents over/under-provisioning/under-provisioning.

	Lightweightness: The core codes <1,000 lines (check elegantrl_helloworld [https://github.com/AI4Finance-Foundation/ElegantRL/tree/master/elegantrl_helloworld]).

	Efficient: in many testing cases, it is more efficient than Ray RLlib [https://github.com/ray-project/ray].

ElegantRL implements the following DRL algorithms:

	DDPG, TD3, SAC, A2C, PPO, REDQ for continuous actions

	DQN, DoubleDQN, D3QN, PPO-Discrete for discrete actions

	QMIX, VDN; MADDPG, MAPPO, MATD3 for multi-agent RL

For beginners, we maintain ElegantRL-HelloWorld [https://github.com/AI4Finance-Foundation/ElegantRL/tree/master/elegantrl_helloworld] as a tutorial. It is a lightweight version of ElegantRL with <1,000 lines of core codes. More details are available here [https://elegantrl.readthedocs.io/en/latest/tutorial/intro.html].

Installation

ElegantRL generally requires:

	Python>=3.6

	PyTorch>=1.0.2

	gym, matplotlib, numpy, pybullet, torch, opencv-python, box2d-py.

You can simply install ElegantRL from PyPI with the following command:

1pip3 install erl --upgrade

Or install with the newest version through GitHub:

1git clone https://github.com/AI4Finance-Foundation/ElegantRL.git
2cd ElegantRL
3pip3 install .

HelloWorld

	Hello, World!

	Networks: net.py

	Agents: agent.py

	Environment: env.py

	Main: run.py

	Quickstart

Overview

	Key Concepts and Features

	Cloud-native Paradigm

	Muti-level Parallelism

Tutorials

	Example 1: LunarLanderContinuous-v2

	Example 2: BipedalWalker-v3

	How to create a VecEnv on GPUs

	How to run worker parallelism: Isaac Gym

	How to run learner parallelism: REDQ

	How to learn stably: H-term

	Cloud Example 1: Generational Evolution

	Cloud Example 2: Tournament-based Ensemble Training

Algorithms

	DQN

	Double DQN

	DDPG

	TD3

	SAC

	A2C

	PPO

	REDQ

	MADDPG

	MATD3

	QMix

	VDN

	MAPPO

API Reference

	Configuration: config.py

	Run: run.py

	Worker: worker.py

	Replay Buffer: replay_buffer.py

	Evaluator: evaluator.py

Other

	FAQ

Indices and tables

	Index

	Module Index

	Search Page

Hello, World!

We will help you understand and get hands-on experience with ElegantRL-HelloWorld [https://github.com/AI4Finance-Foundation/ElegantRL/tree/master/helloworld].

Table of Contents

	Hello, World!

	“Net-Agent-Env-Run” File Structure

	net.py

	agent.py

	env.py

	run.py

	demo.py

	Run the Code

“Net-Agent-Env-Run” File Structure

[image: ../_images/File_structure.png]

One sentence summary: an agent (agent.py) with Actor-Critic networks (net.py) is trained (run.py) by interacting with an environment (env.py).

As a high-level overview, the relations among the files are as follows. Initialize an environment from env.py and an agent from agent.py. The agent is constructed with Actor and Critic networks from net.py. In each training step from run.py, the agent interacts with the environment, generating transitions that are stored into a Replay Buffer. Then, the agent fetches transitions from the Replay Buffer to train its networks. After each update, an evaluator evaluates the agent’s performance and saves the agent if the performance is good.

net.py

Our net.py [https://github.com/AI4Finance-Foundation/ElegantRL/blob/master/helloworld/net.py] contains three types of networks. Each type of networks includes a base network for inheritance and a set of variations for algorithms.

	Q-Net

	Actor Network

	Critic Network

agent.py

agent.py [https://github.com/AI4Finance-Foundation/ElegantRL/blob/master/helloworld/agent.py] contains classes of different DRL agent, where each agent corresponds to a DRL algorithms. In addition, it also contains the Replay Buffer class for data storage.

In this HelloWorld, we focus on DQN, SAC, and PPO, which are the most representative and commonly used DRL algorithms.

For a complete list of DRL algorithms, please go to here [https://github.com/AI4Finance-Foundation/ElegantRL/tree/master/elegantrl/agents].

env.py

env.py [https://github.com/AI4Finance-Foundation/ElegantRL/blob/master/helloworld/env.py] contains a wrapper class that preprocesses the Gym-styled environment (env).

Refer to OpenAI’s explanation [https://github.com/openai/gym/blob/master/gym/core.py] to better understand the how a Gym-styled environment is formulated.

run.py

run.py [https://github.com/AI4Finance-Foundation/ElegantRL/blob/master/helloworld/run.py] contains basic functions for the training and evaluating process. In the training process train_and_evaluate, there are two major steps:

	Initialization:

	hyper-parameters args.

	env = PreprocessEnv() : creates an environment (in the OpenAI gym format).

	agent = agent.XXX() : creates an agent for a DRL algorithm.

	evaluator = Evaluator() : evaluates and stores the trained model.

	buffer = ReplayBuffer() : stores the transitions.

	Then, the training process is controlled by a while-loop:

	agent.explore_env(…): the agent explores the environment within target steps, generates transitions, and stores them into the ReplayBuffer.

	agent.update_net(…): the agent uses a batch from the ReplayBuffer to update the network parameters.

	evaluator.evaluate_save(…): evaluates the agent’s performance and keeps the trained model with the highest score.

The while-loop will terminate when the conditions are met, e.g., achieving a target score, maximum steps, or manual breaks.

In run.py, we also provide an evaluator to periodically evaluate and save the model.

demo.py

demo.py [https://github.com/AI4Finance-Foundation/ElegantRL/blob/master/helloworld/demo.py] contains four demo functions:

	discrete action + off-policy algorithm

	discrete action + on-policy algorithm

	continuous action + off-policy algorithm

	continuous action + on-policy algorithm

Run the Code

In demo.py [https://github.com/AI4Finance-Foundation/ElegantRL/blob/master/helloworld/demo.py], there are four functions that are available to run in the main function. You can see demo_continuous_action_on_policy() called at the bottom of the file.

if __name__ == '__main__':

 ENV_ID = 3 # int(sys.argv[2])
 # demo_continuous_action_off_policy()
 demo_continuous_action_on_policy()
 # demo_discrete_action_off_policy()
 # demo_discrete_action_on_policy()

Inside each of the four functions, we provide three tasks as demos to help you get start. You can choose the task you want to train on by setting the env_id.

	Pendulum id: 1

	LunarLanderContinuous-v2 id: 2

	BipedalWalker-v3 id: 3

If everything works, congratulations!

Enjoy your journey to the DRL world with ElegantRL!

Networks: net.py

In ElegantRL, there are three basic network classes: Q-net, Actor, and Critic. Here, we list several examples, which are the networks used by DQN, SAC, and PPO algorithms.

The full list of networks are available here [https://github.com/AI4Finance-Foundation/ElegantRL/blob/master/elegantrl/agents/net.py]

Q Net

Actor Network

Critic Network

Agents: agent.py

In this HelloWorld, we focus on DQN, SAC, and PPO, which are the most representative and commonly used DRL algorithms.

Agents

Replay Buffer

Environment: env.py

Main: run.py

Hyper-parameters

Train and Evaluate

Evaluator

Quickstart

As a quickstart, we select the Pendulum task from the demo.py to show how to train a DRL agent in ElegantRL.

Step 1: Import packages

from elegantrl_helloworld.demo import *

gym.logger.set_level(40) # Block warning

Step 2: Specify Agent and Environment

env = PendulumEnv('Pendulum-v0', target_return=-500)
args = Arguments(AgentSAC, env)

Part 3: Specify Hyper-parameters

args.reward_scale = 2 ** -1 # RewardRange: -1800 < -200 < -50 < 0
args.gamma = 0.97
args.target_step = args.max_step * 2
args.eval_times = 2 ** 3

Step 4: Train and Evaluate the Agent

train_and_evaluate(args)

Try by yourself through this Colab [https://github.com/AI4Finance-Foundation/ElegantRL/blob/master/quickstart_Pendulum_v1.ipynb]!

Tip

	By default, it will train a stable-SAC agent in the Pendulum-v0 environment for 400 seconds.

	It will choose to utilize CPUs or GPUs automatically. Don’t worry, we never use .cuda().

	It will save the log and model parameters file in './{Environment}_{Agent}_{GPU_ID}'.

	It will print the total reward while training. (Maybe we should use TensorBoardX?)

	The code is heavily commented. We believe these comments can answer some of your questions.

Key Concepts and Features

One sentence summary: in deep reinforcement learning (DRL), an agent learns by continuously interacting with an unknown environment, in a trial-and-error manner, making sequential decisions under uncertainty and achieving a balance between exploration (of uncharted territory) and exploitation (of current knowledge).

	The lifecycle of a DRL application consists of three stages: simulation, learning, and deployment. Our goal is to leverage massive computing power to address three major challenges existed in these three stages:
	
	simulation speed bottleneck;

	sensitivity to hyper-parameters;

	unstable generalization ability.

	ElegantRL is a massively parallel framework for cloud-native DRL applications implemented in PyTorch:
	
	We embrace the accessibility of cloud computing platforms and follow a cloud-native paradigm in the form of containerization, microservices, and orchestration, to ensure fast and robust execution on a cloud.

	We fully exploit the parallelism of DRL algorithms at multiple levels, namely the worker/learner parallelism within a container, the pipeline parallelism (asynchronous execution) over multiple microservices, and the inherent parallelism of the scheduling task at an orchestrator.

	We take advantage of recent technology breakthroughs in massively parallel simulation, population-based training that implicitly searches for optimal hyperparameters, and ensemble methods for variance reduction.

ElegantRL features strong scalability, elasticity and stability and allows practitioners to conduct efficient training from one GPU to hundreds of GPUs on a cloud:

Scalable: the multi-level parallelism results in high scalability. One can train a population with hundreds of agents, where each agent employs thousands of workers and tens of learners. Therefore, ElegantRL can easily scale out to a cloud with hundreds or thousands of nodes.

Elastic: ElegantRL features strong elasticity on the cloud. The resource allocation can be made according to the numbers of workers, learners, and agents and the unit resource assigned to each of them. We allow a flexible adaptation to meet the dynamic resource availability on the cloud or the demands of practitioners.

Stable: With the massively computing power of a cloud, ensemble methods and population-based training will greatly improve the stability of DRL algorithms. Furthermore, ElegantRL leverages computing resource to implement the Hamiltonian-term as an add-on regularization to model-free DRL algorithms. Such an add-on H-term utilizes computing power (can be computed in parallel on GPU) to search for the “minimum-energy state”, corresponding to the stable state of a system. Altogether, ElegantRL demonstrates a much more stable performance compared to Stable-Baseline3, a popular DRL library devote to stability.

Accessible: ElegantRL is a highly modularized framework and maintains ElegantRL-HelloWorld for beginners to get started. We also help users overcome the learning curve by providing API documentations, Colab tutorials, frequently asked questions (FAQs), and demos, e.g., on OpenAI Gym, MuJoCo, Isaac Gym.

Cloud-native Paradigm

To the best of our knowledge, ElegantRL is the first open-source cloud-native framework that supports millions of GPU cores to carry out massively parallel DRL training at multiple levels.

In this article, we will discuss our motivation and cloud-native designs.

Why cloud-native?

When you need more computing power and storage for your task, running on a cloud may be a more preferable choice than buying racks of machines. Due to its accessible and automated nature, the cloud has been a disruptive force in many deep learning tasks, such as natural langauge processing, image recognition, video synthesis, etc.

Therefore, we embrace the cloud computing platforms to:

	build a serverless application framework that performs the entire life-cycle (simulate-learn-deploy) of DRL applications on low-cost cloud computing power.

	support for single-click training for sophisticated DRL problems (compute-intensive and time-consuming) with automatic hyper-parameter tuning.

	provide off-the-shelf APIs to free users from full-stack development and machine learning implementations, e.g., DRL algorithms, ensemble methods, performance analysis.

Our goal is to allow for wider DRL applications and faster development life cycles that can be created by smaller teams. One simple example of this is the following workflow.

A user wants to train a trading agent using minute-level NASDAQ 100 constituent stock dataset, a compute-intensive task as the dimensions of the dataset increase, e.g., the number of stocks, the length of period, the number of features. Once the user finishes constructing the environment/simulator, she can directly submit the job to our framework. Say the user has no idea which DRL algorithms she should use and how to setup the hyper-parameters, the framework can automatically initialize agents with different algorithms and hyper-parameter to search the best combination. All data is stored in the cloud storage and the computing is parallized on cloud clusters.

A cloud-native solution

ElegantRL follows the cloud-native paradigm in the form of microservice, containerization, and orchestration.

Microservices: ElegantRL organizes a DRL agent as a collection of microservices, including orchestrator, worker, learner, evaluator, etc. Each microservice has specialized functionality and connects to other microservices through clear-cut APIs. The microservice structure makes ElegantRL a highly modularized framework and allows practitioners to use and customize without understanding its every detail.

Containerization: An agent is encapsulated into a pod (the basic deployable object in Kubernetes (K8s)), while each microservice within the agent is mapped to a container (a lightweight and portable package of software). On the cloud, microservice and containerization together offer significant benefits in asynchronous parallelism, fault isolation, and security.

Orchestration: ElegantRL employs K8s to orchestrate pods and containers, which automates the deployment and management of the DRL application on the cloud. Our goal is to free developers and practitioners from sophisticated distributed machine learning.

We provide two different scheduling mechanism on the cloud, namely generational evolution and tournament-based evolution.

A tutorial on generational evolution is available here [https://elegantrl.readthedocs.io/en/latest/tutorial/finrl-podracer.html].

A tutorial on tournament-based evolution is available here [https://elegantrl.readthedocs.io/en/latest/tutorial/elegantrl-podracer.html].

Muti-level Parallelism

ElegantRL is a massively parallel framework for DRL algorithms. In this article, we will explain how we map the multi-level parallelism of DRL algorithms to a cloud, namely the worker/learner parallelism within a container, the pipeline parallelism (asynchronous execution) over multiple microservices, and the inherent parallelism of the scheduling task at an orchestrator.

Here, we follow a bottom-up approach to describe the parallelism at multiple levels.

[image: ../_images/parallelism.png]
An overview of the multi-level parallelism supported by ElegantRL. ElegantRL decomposes an agent into worker (a) and learner (b) and pipes their executions through the pipeline parallelism (c). Besides, ElegantRL emphasizes three types of inherent parallelism in DRL algorithms, including population-based training (PBT) (d1), ensemble methods (d2), and multi-agent DRL (d3).

Worker/Learner parallelism

ElegantRL adopts a worker-learner decomposition of a single agent, decoupling the data sampling process and model learning process. We exploit both the worker parallelism and learner parallelism.

Worker parallelism: a worker generates transitions from interactions of an actor with an environment. As shown in the figure a, ElegantRL supports the recent breakthrough technology, massively parallel simulation, with a simulation speedup of 2 ~ 3 orders of magnitude. One GPU can simulate the interactions of one actor with thousands of environments, while existing libraries achieve parallel simulation on hundreds of CPUs.

	Advantage of massively parallel simulation:
	
	Running thousands of parallel simulations, since the manycore GPU architecture is natually suited for parallel simulations.

	Speeding up the matrix computations of each simulation using GPU tensor cores.

	Reducing the communication overhead by bypassing the bottleneck between CPUs and GPUs.

	Maximizing GPU utilization.

To achieve massively parallel simulation, ElegantRL supports both user-customized and imported simulator, namely Issac Gym from NVIDIA.

A tutorial on how to create a GPU-accelerated VecEnv is available here [https://elegantrl.readthedocs.io/en/latest/examples/Creating_VecEnv.html].

A tutorial on how to utilize Isaac Gym as an imported massively parallel simulator is available here [https://elegantrl.readthedocs.io/en/latest/tutorial/isaacgym.html].

Note

Besides massively parallel simulation on GPUs, we allow users to conduct worker parallelism on classic environments through multiprocessing, e.g., OpenAI Gym and MuJoCo.

Learner parallelism: a learner fetches a batch of transitions to train neural networks, e.g., a critic net and an actor net in the figure b. Multiple critic nets and actor nets of an ensemble method can be trained simultaneously on one GPU. It is different from other libraries that achieve parallel training on multiple CPUs via distributed SGD.

Pipeline parallelism

We view the worker-learner interaction as a producer-consumer model: a worker produces transitions and a learner consumes. As shown in figure c, ElegantRL pipelines the execution of workers and learners, allowing them to run on one GPU asynchronously. We exploit pipeline parallelism in our implementations of off-policy model-free algorithms, including DDPG, TD3, SAC, etc.

Inherent parallelism

ElegantRL supports three types of inherent parallelism in DRL algorithms, including population-based training, ensemble methods, and multi-agent DRL. Each features strong independence and requires little or no communication.

	Population-based training (PBT): it trains hundreds of agents and obtains a powerful agent, e.g., generational evolution and tournament-based evolution. As shown in figure d1, an agent is encapsulated into a pod on the cloud, whose training is orchestrated by the evaluator and selector of a PBT controller. Population-based training implicitly achieves massively parallel hyper-parameter tuning.

	Ensemble methods: it combines the predictions of multiple models and obtains a better result than each individual result, as shown in figure d2. ElegantRL implements various ensemble methods that perform remarkably well in the following scenarios:

	take an average of multiple critic nets to reduce the variance in the estimation of Q-value;

	perform a minimization over multiple critic nets to reduce over-estimation bias;

	optimize hyper-parameters by initializing agents in a population with different hyper-parameters.

	Multi-agent DRL: in the cooperative, competitive, or mixed settings of MARL, multiple parallel agents interact with the same environment. During the training process, there is little communication among those parallel agents.

Example 1: LunarLanderContinuous-v2

LunarLanderContinuous-v2 is a robotic control task. The goal is to get a Lander to rest on the landing pad. If lander moves away from landing pad it loses reward back. Episode finishes if the lander crashes or comes to rest, receiving additional -100 or +100 points. Detailed description of the task can be found at OpenAI Gym [https://gym.openai.com/envs/LunarLanderContinuous-v2/]. Our Python code is available here [https://github.com/AI4Finance-Foundation/ElegantRL/blob/master/examples/tutorial_LunarLanderContinous-v2.py].

When a Lander takes random actions:

[image: ../_images/LunarLander.gif]

Step 1: Install ElegantRL

pip install git+https://github.com/AI4Finance-LLC/ElegantRL.git

Step 2: Import packages

	ElegantRL

	OpenAI Gym: a toolkit for developing and comparing reinforcement learning algorithms (collections of environments).

from elegantrl.run import *

gym.logger.set_level(40) # Block warning

Step 3: Get environment information

get_gym_env_args(gym.make('LunarLanderContinuous-v2'), if_print=True)

Output:

env_args = {
 'env_num': 1,
 'env_name': 'LunarLanderContinuous-v2',
 'max_step': 1000,
 'state_dim': 8,
 'action_dim': 4,
 'if_discrete': True,
 'target_return': 200,
 'id': 'LunarLanderContinuous-v2'
}

Step 4: Initialize agent and environment

	agent: chooses a agent (DRL algorithm) from a set of agents in the directory [https://github.com/AI4Finance-Foundation/ElegantRL/tree/master/elegantrl/agents].

	env_func: the function to create an environment, in this case, we use gym.make to create LunarLanderContinuous-v2.

	env_args: the environment information.

env_func = gym.make
env_args = {
 'env_num': 1,
 'env_name': 'LunarLanderContinuous-v2',
 'max_step': 1000,
 'state_dim': 8,
 'action_dim': 4,
 'if_discrete': True,
 'target_return': 200,
 'id': 'LunarLanderContinuous-v2'
}

args = Arguments(AgentModSAC, env_func=env_func, env_args=env_args)

Step 5: Specify hyper-parameters

A list of hyper-parameters is available here [https://elegantrl.readthedocs.io/en/latest/api/config.html].

args.target_step = args.max_step
args.gamma = 0.99
args.eval_times = 2 ** 5

Step 6: Train your agent

In this tutorial, we provide a single-process demo to train an agent:

train_and_evaluate(args)

Try by yourself through this Colab [https://github.com/AI4Finance-Foundation/ElegantRL/blob/master/tutorial_LunarLanderContinuous_v2.ipynb]!

Performance of a trained agent:

[image: ../_images/LunarLanderTwinDelay3.gif]

Example 2: BipedalWalker-v3

BipedalWalker-v3 is a classic task in robotics that performs a fundamental skill: moving forward as fast as possible. The goal is to get a 2D biped walker to walk through rough terrain. BipedalWalker is considered to be a difficult task in the continuous action space, and there are only a few RL implementations that can reach the target reward. Our Python code is available here [https://github.com/AI4Finance-Foundation/ElegantRL/blob/master/examples/tutorial_BipedalWalker-v3.py].

When a biped walker takes random actions:

[image: ../_images/BipedalWalker-v3_1.gif]

Step 1: Install ElegantRL

pip install git+https://github.com/AI4Finance-LLC/ElegantRL.git

Step 2: Import packages

	ElegantRL

	OpenAI Gym: a toolkit for developing and comparing reinforcement learning algorithms (collections of environments).

from elegantrl.run import *

gym.logger.set_level(40) # Block warning

Step 3: Get environment information

get_gym_env_args(gym.make('BipedalWalker-v3'), if_print=False)

Output:

env_args = {
 'env_num': 1,
 'env_name': 'BipedalWalker-v3',
 'max_step': 1600,
 'state_dim': 24,
 'action_dim': 4,
 'if_discrete': False,
 'target_return': 300,
}

Step 4: Initialize agent and environment

	agent: chooses a agent (DRL algorithm) from a set of agents in the directory [https://github.com/AI4Finance-Foundation/ElegantRL/tree/master/elegantrl/agents].

	env_func: the function to create an environment, in this case, we use gym.make to create BipedalWalker-v3.

	env_args: the environment information.

env_func = gym.make
env_args = {
 'env_num': 1,
 'env_name': 'BipedalWalker-v3',
 'max_step': 1600,
 'state_dim': 24,
 'action_dim': 4,
 'if_discrete': False,
 'target_return': 300,
 'id': 'BipedalWalker-v3',
}

args = Arguments(AgentPPO, env_func=env_func, env_args=env_args)

Step 5: Specify hyper-parameters

A list of hyper-parameters is available here [https://elegantrl.readthedocs.io/en/latest/api/config.html].

args.target_step = args.max_step * 4
args.gamma = 0.98
args.eval_times = 2 ** 4

Step 6: Train your agent

In this tutorial, we provide four different modes to train an agent:

	Single-process: utilize one GPU for a single-process training. No parallelism.

	Multi-process: utilize one GPU for a multi-process training. Support worker and learner parallelism.

	Multi-GPU: utilize multi-GPUs to train an agent through model fusion. Specify the GPU ids you want to use.

	Tournament-based ensemble training: utilize multi-GPUs to run tournament-based ensemble training.

flag = 'SingleProcess'

if flag == 'SingleProcess':
 args.learner_gpus = 0
 train_and_evaluate(args)

elif flag == 'MultiProcess':
 args.learner_gpus = 0
 train_and_evaluate_mp(args)

elif flag == 'MultiGPU':
 args.learner_gpus = [0, 1, 2, 3]
 train_and_evaluate_mp(args)

elif flag == 'Tournament-based':
 args.learner_gpus = [[i,] for i in range(4)] # [[0,], [1,], [2,]] or [[0, 1], [2, 3]]
 python_path = '.../bin/python3'
 train_and_evaluate_mp(args, python_path)

else:
 raise ValueError(f"Unknown flag: {flag}")

Try by yourself through this Colab [https://github.com/AI4Finance-Foundation/ElegantRL/blob/master/tutorial_BipedalWalker_v3.ipynb]!

Performance of a trained agent:

[image: ../_images/BipedalWalker-v3_2.gif]
Check out our video on bilibili: Crack the BipedalWalkerHardcore-v2 with total reward 310 using IntelAC [https://www.bilibili.com/video/BV1wi4y187tC].

How to create a VecEnv on GPUs

ElegantRL supports massively parallel simulation through GPU-accelerated VecEnv.

Here, we talk about how to create a VecEnv on GPUs from scratch and go through a simple chasing example, a deterministic environment with continuous actions and continuous state space. The goal is to move an agent to chase a randomly moving robot. The reward depends on the distance between agent and robot. The environment terminates when the agent catches the robot or the max step is reached.

To keep the example simple, we only use two packages, PyTorch and Numpy.

import torch
import numpy as np

Now, we start to create the environment, which usually includes initialization function, reset function, and step function.

For initialization function, we specify the number of environments env_num, the GPU id device_id, and the dimension of the chasing space dim. In the chasing environment, we keep track of positions and velocities of the agent and the robot.

class ChasingVecEnv:
 def __init__(self, dim=2, env_num=4096, device_id=0):
 self.dim = dim
 self.init_distance = 8.0

 # reset
 self.p0s = None # position
 self.v0s = None # velocity
 self.p1s = None
 self.v1s = None

 self.distances = None
 self.current_steps = None

 '''env info'''
 self.env_name = 'ChasingVecEnv'
 self.state_dim = self.dim * 4
 self.action_dim = self.dim
 self.max_step = 2 ** 10
 self.if_discrete = False
 self.target_return = 6.3

 self.env_num = env_num
 self.device = torch.device(f"cuda:{device_id}")

The second step is to implement a reset function. The reset function is called at the beginning of each episode and sets initial state to current state. To utilize GPUs, we use data structures for multi-dimensional tensors provided by the torch package.

def reset(self):
 self.p0s = torch.zeros((self.env_num, self.dim), dtype=torch.float32, device=self.device)
 self.v0s = torch.zeros((self.env_num, self.dim), dtype=torch.float32, device=self.device)
 self.p1s = torch.zeros((self.env_num, self.dim), dtype=torch.float32, device=self.device)
 self.v1s = torch.zeros((self.env_num, self.dim), dtype=torch.float32, device=self.device)

 self.current_steps = np.zeros(self.env_num, dtype=np.int)

 for env_i in range(self.env_num):
 self.reset_env_i(env_i)

 self.distances = ((self.p0s - self.p1s) ** 2).sum(dim=1) ** 0.5

 return self.get_state()

The last function is the step function, that includes a transition function and a reward function, and signals the terminal state. To compute the transition function, we utilize mathematical operations from the torch package over the data (tensors). These operations allow us to compute transitions and rewards of thousands of environments in parallel.

Note

Unlike computing the transition function and reward function in parallel, we check the terminal state in a sequential way. Since sub-environments may terminate at different time steps, when a sub-environment is at terminal state, we have to reset it manually.

def step(self, action1s):
 '''transition function'''
 action0s = torch.rand(size=(self.env_num, self.dim), dtype=torch.float32, device=self.device)
 action0s_l2 = (action0s ** 2).sum(dim=1, keepdim=True) ** 0.5
 action0s = action0s / action0s_l2.clamp_min(1.0)

 self.v0s *= 0.50
 self.v0s += action0s
 self.p0s += self.v0s * 0.01

 action1s_l2 = (action1s ** 2).sum(dim=1, keepdim=True) ** 0.5
 action1s = action1s / action1s_l2.clamp_min(1.0)

 self.v1s *= 0.75
 self.v1s += action1s
 self.p1s += self.v1s * 0.01

 '''reward function'''
 distances = ((self.p0s - self.p1s) ** 2).sum(dim=1) ** 0.5
 rewards = self.distances - distances - action1s_l2.squeeze(1) * 0.02
 self.distances = distances

 '''check terminal state'''
 self.steps += 1 # array
 dones = torch.zeros(self.env_num, dtype=torch.float32, device=self.device)
 for env_i in range(self.env_num):
 done = 0
 if distances[env_i] < 1:
 done = 1
 rewards[env_i] += self.init_distance
 elif self.steps[env_i] == self.max_step:
 done = 1

 if done:
 self.reset_env_i(env_i)
 dones[env_i] = done

 '''next_state'''
 next_states = self.get_state()
 return next_states, rewards, dones, None

For more information about the chasing environment, we provide a Colab version [https://github.com/AI4Finance-Foundation/ElegantRL/blob/master/tutorial_Creating_ChasingVecEnv.ipynb] to play with, and its code can be found here [https://github.com/AI4Finance-Foundation/ElegantRL/blob/master/elegantrl/envs/ChasingEnv.py].

How to run worker parallelism: Isaac Gym

In the previous tutorial, we present how to create a GPU-accelerated VecEnv that takes a batch of actions and returns a batch of transitions for every step.

Besides the user-customized VecEnv, ElegantRL supports external VecEnv, e.g., NVIDIA Isaac Gym. In this tutorial, we select Isaac Gym as an example to show how to utilize such a VecEnv to realize the massively parallel simulation (worker parallelism) in ElegantRL.

What is NVIDIA Isaac Gym?

NVIDIA Isaac Gym is NVIDIA’s physics simulation environment for reinforcement learning research, an end-to-end high performance robotics simulation platform. It leverages NVIDIA PhysX to provide a GPU-accelerated simulation back-end and enables thousands of environments to run in parallel on a single workstation, achieving 2-3 orders of magnitude of training speed-up in continuous control tasks.

Features:

	Implementation of multiple highly complex robotic manipulation environments which can be simulated at hundreds of thousands of steps per second on a single GPU.

	High-fidelity GPU-accelerated robotics simulation with a variety of environment sensors - position, velocity, force, torque, etc.

	A Tensor API in Python providing direct access to physics buffers by wrapping them into PyTorch tensors without going through any CPU bottlenecks.

	Support for importing URDF and MJCF files with automatic convex decomposition of imported 3D meshes for physical simulation.

Here is a visualization of humanoid in Isaac Gym:

[image: ../_images/isaacgym.gif]
For more information, please view its recently released paper at https://arxiv.org/abs/2108.10470.

To install Isaac Gym, please follow the instructions at https://developer.nvidia.com/isaac-gym.

Experiments on Ant and Humanoid

Ant and humanoid are two canonical robotic control tasks that simulate an ant and a humanoid, respectively, where each task has both MuJoCo version and Isaac Gym version. The ant task is a simple environment to simulate due to its stability in the initial state, while the humanoid task is often used as a testbed for locomotion learning. Even though the implementations of MuJoCo and Isaac Gym are slightly different, the objective of both is to have the agent move forward as fast as possible.

On one DGX-2 server, we compare ElegantRL-podracer with RLlib, since both support multiple GPUs. ElegantRL-podracer used PPO from ElegantRL, while in RLlib we used the Decentralized Distributed Proximal Policy Optimization (DD-PPO) algorithm that scales well to multiple GPUs. For fair comparison, we keep all adjustable parameters and computing resources the same, such as the depth and width of neural networks, total training steps/time, number of workers, and GPU and CPU resources. Specifically, we use a batch size of 1024, learning rate of 0.001, and a replay buffer size of 4096 across tasks.

	We employ two different metrics to evaluate the agent’s performance:
	
	Episodic reward vs. training time (wall-clock time): we measure the episodic reward at different training time, which can be affected by the convergence speed, communication overhead, scheduling efficiency, etc.

	Episodic reward vs. #samples: from the same testings, we also measure the episodic reward at different number of samples. This result can be used to investigate the massive parallel simulation capability of GPUs, and also check the algorithm’s performance.

[image: ../_images/envs.png]
[image: ../_images/performance2.png]
[image: ../_images/performance1.png]

Running NVIDIA Isaac Gym in ElegantRL

ElegantRL provides a wrapper IsaacVecEnv to process an Isaac Gym environment:

from elegantrl.envs.IsaacGym import IsaacVecEnv, IsaacOneEnv
import isaacgym
import torch # import torch after import IsaacGym modules

env_func = IsaacVecEnv
env_args = {
 'env_num': 4096,
 'env_name': 'Ant',
 'max_step': 1000,
 'state_dim': 60,
 'action_dim': 8,
 'if_discrete': False,
 'target_return': 14000.0,

 'device_id': None, # set by worker
 'if_print': False, # if_print=False in default
}

Once we have the env_func and env_args, we can follow the same training procedure as we listed in the BipedalWalker and LunarLander examples.

Initialize agent and environment, specify hyper-parameters, and start training:

from elegantrl.agents.AgentPPO import AgentPPO
from elegantrl.run import train_and_evaluate_mp

args = Arguments(agent=AgentPPO, env_func=env_func, env_args=env_args)

'''set one env for evaluator'''
args.eval_env_func = IsaacOneEnv
args.eval_env_args = args.env_args.copy()
args.eval_env_args['env_num'] = 1

'''set other hyper-parameters'''
args.net_dim = 2 ** 9
args.batch_size = args.net_dim * 4
args.target_step = args.max_step
args.repeat_times = 2 ** 4

args.save_gap = 2 ** 9
args.eval_gap = 2 ** 8
args.eval_times1 = 2 ** 0
args.eval_times2 = 2 ** 2

args.worker_num = 1
args.learner_gpus = 0
train_and_evaluate_mp(args)

How to run learner parallelism: REDQ

How to learn stably: H-term

Stability plays a key role in productizing DRL applications to real-world problems, making it a central concern of DRL researchers and practitioners. Recently, a lot of algorithms and open-source software have been developed to address this challenge. A popular open-source library Stable-Baselines3 [https://github.com/DLR-RM/stable-baselines3] offers a set of reliable implementations of DRL algorithms that match prior results.

In this article, we introduce a Hamiltonian-term (H-term), a generic add-on in ElegantRL that can be applied to existing model-free DRL algorithms. The H-term essentially trades computing power for stability.

Basic Idea

In a standard RL problem, a decision-making process can be modeled as a Markov Decision Process (MDP). The Bellman equation gives the optimality condition for MDP problems:

[image: ../_images/bellman.png]
The above equation is inherently recursive, so we expand it as follows:

[image: ../_images/recursive.png]
In practice, we aim to find a policy that maximizes the Q-value. By taking a variational approach, we can rewrite the Bellman equation into a Hamiltonian equation. Our goal then is transformed to find a policy that minimizes the energy of a system. (Check our paper [https://www.semanticscholar.org/paper/Quantum-Tensor-Networks-for-Variational-Learning-Liu-Fang/caa14bff1573192b94fe37b8803b6f788d30f472] for details).

[image: ../_images/H-term.png]

A Simple Add-on

The derivations and physical interpretations may be a little bit scary, however, the actual implementation of the H-term is super simple. Here, we present the pseudocode and make a comparison (marked in red) to the Actor-Critic algorithms:

[image: ../_images/pseudo.png]
As marked out in lines 19–20, we include an additional update of the policy network, in order to minimize the H-term. Different from most algorithms that optimize on a single step (batch of transitions), we emphasize the importance of the sequential information from a trajectory (batch of trajectories).

It is a fact that optimizing the H-term is compute-intensive, controlled by the hyper-parameter L (the number of selected trajectories) and K (the length of each trajectory). Fortunately, ElegantRL fully supports parallel computing from a single GPU to hundreds of GPUs, which provides the opportunity to trade computing power for stability.

Example: Hopper-v2

Currently, we have implemented the H-term into several widely-used DRL algorithms, PPO, SAC, TD3, and DDPG. Here, we present the performance on a benchmark problem Hopper-v2 [https://gym.openai.com/envs/Hopper-v2/] using PPO algorithm.

The implementations of PPO+H in here [https://github.com/AI4Finance-Foundation/ElegantRL/blob/master/elegantrl/agents/AgentPPO_H.py]

[image: ../_images/samples.png]
[image: ../_images/time.png]
In terms of variance, it is obvious that ElegantRL substantially outperforms Stable-Baseline3. The variance over 8 runs is much smaller. Also, the PPO+H in ElegantRL completed the training process of 5M samples in about 6x faster than Stable-Baseline3.

Cloud Example 1: Generational Evolution

In this section, we provide a tutorial of generational evolution mechanism with an ensemble method, to show ElegantRL’s scalability on hundreds of computing nodes on a cloud platform, say, hundreds of GPUs.

For detailed description, please check our recent paper:

Zechu Li, Xiao-Yang Liu, Jiahao Zheng, Zhaoran Wang, Anwar Walid, and Jian Guo. FinRL-podracer: High performance and scalable deep reinforcement learning for quantitative finance. [https://arxiv.org/abs/2111.05188] ACM International Conference on AI in Finance (ICAIF), 2021.

The codes are available on GitHub [https://github.com/AI4Finance-Foundation/FinRL_Podracer].

What is a generational evolution mechanism?

A generational evolution mechanism with an ensemble method is a way to coordinate parallel agents in the population-based training (agent parallelism in ElegantRL). Under such a mechanism, we can initialize hundreds or even thousands of parallel agents with different hyper-parameter setups, thus performing hyper-parameter search on hundreds of GPUs of the cloud.

In the generational evolution, we periodically update every agent in parallel to form generations, where each period can be a certain number of training steps or a certain amount of training time. For each generation, it is composed of population ranking and model ensemble, as shown in the figure below.

[image: ../_images/framework.png]

Population ranking

The population ranking is scheduled by an evaluator [https://elegantrl.readthedocs.io/en/latest/api/evaluator.html] and a selector.

At every generation,

	A population of N agents is trained for a certain number of training steps or a certain amount of training time.

	The evaluator calculates agents’ scores, e.g., episodic rewards.

	The selector ranks agents based on their scores and redistributes training files of agents with the highest scores to form a new population

	The new population of N agents continues to be trained in the next generation.

Model ensemble

In the training of each agent, we provide an ensemble method, model fusion, to stabilize its learning process. In the model fusion, we concurrently run K pods (training processes) to train each agent in parallel, where all K pods are initialized with the same hyper-parameters but different random seeds. The stochasticity brought by different random seeds increases the diversity of data collection, thus improving the stability of the learning process. After all K pods finish training, we fuse K trained models and optimzers to obtain a single model and optimizer for that agent.

At present, we achieve the model fusion in a similar fashion to the soft update of target network in DRL. For example, for models and optimizers, we have:

def avg_update_net(dst_net, src_net, device):
 for dst, src in zip(dst_net.parameters(), src_net.parameters()):
 dst.data.copy_((dst.data + src.data.to(device)) * 0.5)
 # dst.data.copy_(src.data * tau + dst.data * (1 - tau))

def avg_update_optim(dst_optim, src_optim, device):
 for dst, src in zip(get_optim_parameters(dst_optim), get_optim_parameters(src_optim)):
 dst.data.copy_((dst.data + src.data.to(device)) * 0.5)

Example: stock trading

Finance is a promising and challenging real-world application of DRL algorithms. Therefore, we select a stock trading task as an example, which aims to train a DRL agent that decides where to trade, at what price and what quantity in a stock market.

We select the minute-level dataset of the NASDAQ-100 constituent stocks and follow a training-backtesting pipeline to split the dataset into two sets: the data from 01/01/2016 to 05/25/2019 for training, and the data from 05/26/2019 to 05/26/2021 for backtesting. To ensure that we do not use any future information from backtesting dataset, we store the model snapshots at different training time, say every 100 seconds, then later we use each snapshot model to perform inference on the backtesting dataset and obtain the generalization performance, namely, the cumulative return.

First, we empirically investigate the generational evolution mechanism. The figure below explicitly demonstrates an evolution of N (= 10) agents on 80 A100 GPUs, where the selector chooses the best agent to train in the next generation every 800 seconds. The inner figure depicts the generalization curves of the ten agents in the first generation (without using the agent evolution mechanism). The curve with the generational evolution mechanism (the thick green curve) is substantially higher than the other ten curves.

[image: ../_images/learning_curve.png]
We compare our generational evolution mechanism with RLlib on a varying number of A100 GPUs, i.e., 8, 16, 32, and 80.

[image: ../_images/efficiency.png]

Cloud Example 2: Tournament-based Ensemble Training

In this section, we provide a tutorial of tournament-based ensemble training, to show ElegantRL’s scalability on hundreds of computing nodes on a cloud platform, say, hundreds of GPUs.

For detailed description, please check our recent paper:

Xiao-Yang Liu, Zechu Li, Zhuoran Yang, Jiahao Zheng, Zhaoran Wang, Anwar Walid, Jiang Guo, and Michael I. Jordan. ElegantRL-Podracer: Scalable and Elastic Library for Cloud-Native Deep Reinforcement Learning. [https://arxiv.org/abs/2112.05923] Deep Reinforcement Learning Workshop at NeurIPS, 2021.

What is a tournament-based ensemble training?

The key of the tournament-based ensemble training scheme is the interaction between a training pool and a leaderboard. The training pool contains hundreds of agents that 1) are trained in an asynchronous manner, and 2) can be initialized with different DRL algorithms/hyper-parameter setup for an ensemble purpose. The leaderboard records the agents with high performance and continually updates as more agents (pods) are trained.

[image: ../_images/framework2.png]
As shown in the figure above, the tournament-based ensemble training proceeds as follows:

	An orchestrator instantiates a new agent and put it into a training pool.

	A generator initializes an agent with networks and optimizers selected from a leaderboard. The generator is a class of subordinate functions associated with the leaderboard, which has different variations to support different evolution strategies

	An updater determines whether and where to insert an agent into the leaderboard according to its performance, after a pod has been trained for a certain number of steps or certain amount of time.

Comparison with generational evolution

In generational evolution, the entire population of agents is simultaneously updated for each generation. However, this paradigm scales poorly on the cloud since it requires to finish training of every member of a large population before any further evolution can occur, imposing a significant computational burden.

Our tournament-based ensemble training updates agents asynchronously, which decouples population evolution and singleagent learning. Such an asynchronously distributed training reduce waiting time among parallel agents and reduce the agent-to-agent communication overhead.

Example: Stock Trading

Finance is a promising and challenging real-world application of DRL algorithms. We apply ElegantRL-podracer to a stock trading task as an example to show its potential in quantitative finance.

We aim to train a DRL agent that decides where to trade, at what price and what quantity in a stock market, thus the objective of the problem is to maximize the expected return and minimize the risk. We model the stock trading task as a Markov Decision Process (MDP) as in FinRL [https://github.com/AI4Finance-Foundation/FinRL]. We follow a training-backtesting pipeline and split the dataset into two sets: the data from 01/01/2016 to 05/25/2020 for training, and the data from 05/26/2020 to 05/26/2021 for backtesting.

The experiments were executed using NVIDIA DGX-2 servers in a DGX SuperPOD cloud, a cloud-native infrastructure.

[image: ../_images/fin.png]
Left: cumulative return on minute-level NASDAQ-100 constituents stocks (initial capital $1, 000, 000, transaction cost 0.2%). Right: training time (wall-clock time) for reaching cumulative rewards 1.7 and 1.8, using the model snapshots of ElegantRL-podracer and RLlib.

[image: ../_images/tab.png]
All DRL agents can achieve a better performance than the market benchmark with respect to the cumulative return, demonstrating the algorithm’s effectiveness. We observe that ElegantRL-podracer has a cumulative return of 104.743%, an annual return of 103.591%, and a Sharpe ratio of 2.20, which outperforms RLlib substantially. However, ElegantRL-podracer is not as stable as RLlib during the backtesting period: it achieves annual volatility of 35.357%, max. drawdown 17.187%, and Calmar ratio 6.02. There are two possible reasons to account for such instability:

	the reward design in the stock trading environment is mainly related to the cumulative return, thus leading the agent to take less care of the risk;

	ElegantRL-podracer holds a large number of funds around 2021–03, which naturally leads to a larger slip.

We compare the training performance on a varying number of GPUs, i.e., 8, 16, 32, and 80. We measure the required training time to obtain two cumulative returns of 1.7 and 1.8, respectively. Both ElegantRL-podracer and RLlib require less training time to achieve the same cumulative return as the number of GPUs increases, which directly demonstrates the advantage of cloud computing resources on the DRL training. For ElegantRL-podracer with 80 GPUs, it requires (1900s, 2200s) to reach cumulative returns of 1.7 and 1.8. ElegantRL-podracer with 32 and 16 GPUs need (2400s, 2800s) and (3400s, 4000s) to achieve the same cumulative returns. It demonstrates the high scalability of ElegantRL-podracer and the effectiveness of our cloud-oriented optimizations. For the experiments using RLlib, increasing the number of GPUs does not lead to much speed-up.

Run tournament-based ensemble training in ElegantRL

Here, we provide a demo code to run the Isaac Gym Ant with tournament-based ensemble training in ElegantRL.

import isaacgym
import torch # import torch after import IsaacGym modules
from elegantrl.train.config import Arguments
from elegantrl.train.run import train_and_evaluate_mp
from elegantrl.envs.IsaacGym import IsaacVecEnv, IsaacOneEnv
from elegantrl.agents.AgentPPO import AgentPPO

'''set vec env for worker'''
env_func = IsaacVecEnv
env_args = {
 'env_num': 2 ** 10,
 'env_name': 'Ant',
 'max_step': 1000,
 'state_dim': 60,
 'action_dim': 8,
 'if_discrete': False,
 'target_return': 14000.0,

 'device_id': None, # set by worker
 'if_print': False, # if_print=False in default
}

args = Arguments(agent=AgentPPO(), env_func=env_func, env_args=env_args)
args.agent.if_use_old_traj = False # todo

'''set one env for evaluator'''
args.eval_env_func = IsaacOneEnv
args.eval_env_args = args.env_args.copy()
args.eval_env_args['env_num'] = 1

'''set other hyper-parameters'''
args.net_dim = 2 ** 9
args.batch_size = args.net_dim * 4
args.target_step = args.max_step
args.repeat_times = 2 ** 4

args.save_gap = 2 ** 9
args.eval_gap = 2 ** 8
args.eval_times1 = 2 ** 0
args.eval_times2 = 2 ** 2

args.worker_num = 1 # VecEnv, worker number = 1
args.learner_gpus = [(i,) for i in range(0, 8)] # 8 agents (1 GPU per agent) performing tournament-based ensemble training

train_and_evaluate_mp(args, python_path='.../bin/python3')

DQN

Deep Q-Network (DQN) [https://arxiv.org/abs/1312.5602] is an off-policy value-based algorithm for discrete action space. It uses a deep neural network to approximate a Q function defined on state-action pairs. This implementation starts from a vanilla Deep Q-Learning and supports the following extensions:

	Experience replay: ✔️

	Target network (soft update): ✔️

	Gradient clipping: ✔️

	Reward clipping: ❌

	Prioritized Experience Replay (PER): ✔️

	Dueling network architecture: ✔️

Note

This implementation has no support for reward clipping because we introduce the hyper-paramter reward_scale for reward scaling as an alternative. We believe that the clipping function may omit information since it cannot map the clipped reward back to the original reward; however, the reward scaling function is able to manipulate the reward back and forth.

Warning

PER leads to a faster learning speed and is also critical for environments with sparse rewards. However, a replay buffer with small size may hurt the performance of PER.

Code Snippet

import torch
from elegantrl.run import train_and_evaluate
from elegantrl.config import Arguments
from elegantrl.train.config import build_env
from elegantrl.agents.AgentDQN import AgentDQN

train and save
args = Arguments(env=build_env('CartPole-v0'), agent=AgentDQN())
args.cwd = 'demo_CartPole_DQN'
args.target_return = 195
args.agent.if_use_dueling = True
train_and_evaluate(args)

test
agent = AgentDQN()
agent.init(args.net_dim, args.state_dim, args.action_dim)
agent.save_or_load_agent(cwd=args.cwd, if_save=False)

env = build_env('CartPole-v0')
state = env.reset()
episode_reward = 0
for i in range(2 ** 10):
 action = agent.select_action(state)
 next_state, reward, done, _ = env.step(action)

 episode_reward += reward
 if done:
 print(f'Step {i:>6}, Episode return {episode_reward:8.3f}')
 break
 else:
 state = next_state
 env.render()

Parameters

	
class elegantrl.agents.AgentDQN.AgentDQN(net_dims: [<class 'int'>], state_dim: int, action_dim: int, gpu_id: int = 0, args: ~elegantrl.train.config.Config = <elegantrl.train.config.Config object>)

	Deep Q-Network algorithm. “Human-Level Control Through Deep Reinforcement Learning”. Mnih V. et al.. 2015.

net_dims: the middle layer dimension of MLP (MultiLayer Perceptron)
state_dim: the dimension of state (the number of state vector)
action_dim: the dimension of action (or the number of discrete action)
gpu_id: the gpu_id of the training device. Use CPU when cuda is not available.
args: the arguments for agent training. args = Config()

	
explore_one_env(env, horizon_len: int, if_random: bool = False) → Tuple[torch.Tensor, ...]

	Collect trajectories through the actor-environment interaction for a single environment instance.

env: RL training environment. env.reset() env.step(). It should be a vector env.
horizon_len: collect horizon_len step while exploring to update networks
if_random: uses random action for warn-up exploration
return: (states, actions, rewards, undones) for off-policy

num_envs == 1
states.shape == (horizon_len, num_envs, state_dim)
actions.shape == (horizon_len, num_envs, action_dim)
rewards.shape == (horizon_len, num_envs)
undones.shape == (horizon_len, num_envs)

	
explore_vec_env(env, horizon_len: int, if_random: bool = False) → Tuple[torch.Tensor, ...]

	Collect trajectories through the actor-environment interaction for a vectorized environment instance.

env: RL training environment. env.reset() env.step(). It should be a vector env.
horizon_len: collect horizon_len step while exploring to update networks
if_random: uses random action for warn-up exploration
return: (states, actions, rewards, undones) for off-policy

states.shape == (horizon_len, num_envs, state_dim)
actions.shape == (horizon_len, num_envs, action_dim)
rewards.shape == (horizon_len, num_envs)
undones.shape == (horizon_len, num_envs)

	
get_obj_critic_per(buffer: ReplayBuffer, batch_size: int) → Tuple[torch.Tensor, torch.Tensor]

	Calculate the loss of the network and predict Q values with Prioritized Experience Replay (PER).

	Parameters

	
	buffer – the ReplayBuffer instance that stores the trajectories.

	batch_size – the size of batch data for Stochastic Gradient Descent (SGD).

	Returns

	the loss of the network and Q values.

	
get_obj_critic_raw(buffer: ReplayBuffer, batch_size: int) → Tuple[torch.Tensor, torch.Tensor]

	Calculate the loss of the network and predict Q values with uniform sampling.

	Parameters

	
	buffer – the ReplayBuffer instance that stores the trajectories.

	batch_size – the size of batch data for Stochastic Gradient Descent (SGD).

	Returns

	the loss of the network and Q values.

Networks

	
class elegantrl.agents.net.QNet(*args: Any, **kwargs: Any)

	

	
class elegantrl.agents.net.QNetDuel(*args: Any, **kwargs: Any)

	

Double DQN

Double Deep Q-Network (Double DQN) [https://arxiv.org/abs/1509.06461] is one of the most important extensions of vanilla DQN. It resolves the issue of overestimation via a simple trick: decoupling the max operation in the target into action selection and action evaluation.

Without having to introduce additional networks, we use a Q-network to select the best among the available next actions and use the target network to evaluate its Q-value. This implementation supports the following extensions:

	Experience replay: ✔️

	Target network: ✔️

	Gradient clipping: ✔️

	Reward clipping: ❌

	Prioritized Experience Replay (PER): ✔️

	Dueling network architecture: ✔️

Code Snippet

import torch
from elegantrl.run import train_and_evaluate
from elegantrl.config import Arguments
from elegantrl.train.config import build_env
from elegantrl.agents.AgentDoubleDQN import AgentDoubleDQN

train and save
args = Arguments(env=build_env('CartPole-v0'), agent=AgentDoubleDQN())
args.cwd = 'demo_CartPole_DoubleDQN'
args.target_return = 195
train_and_evaluate(args)

test
agent = AgentDoubleDQN()
agent.init(args.net_dim, args.state_dim, args.action_dim)
agent.save_or_load_agent(cwd=args.cwd, if_save=False)

env = build_env('CartPole-v0')
state = env.reset()
episode_reward = 0
for i in range(2 ** 10):
 action = agent.select_action(state)
 next_state, reward, done, _ = env.step(action)

 episode_reward += reward
 if done:
 print(f'Step {i:>6}, Episode return {episode_reward:8.3f}')
 break
 else:
 state = next_state
 env.render()

Parameters

Networks

	
class elegantrl.agents.net.QNetTwin(*args: Any, **kwargs: Any)

	

	
class elegantrl.agents.net.QNetTwinDuel(*args: Any, **kwargs: Any)

	

DDPG

Deep Deterministic Policy Gradient (DDPG) [https://arxiv.org/abs/1509.02971] is an off-policy Actor-Critic algorithm for continuous action space. Since computing the maximum over actions in the target is a challenge in continuous action space, DDPG deals with this using a policy network to compute an action. This implementation provides DDPG and supports the following extensions:

	Experience replay: ✔️

	Target network: ✔️

	Gradient clipping: ✔️

	Reward clipping: ❌

	Prioritized Experience Replay (PER): ✔️

	Ornstein–Uhlenbeck noise: ✔️

Warning

In the DDPG paper, the authors use time-correlated Ornstein-Uhlenbeck Process to add noise to the action output. However, as shown in the later works, the Ornstein-Uhlenbeck Process is an overcomplication that does not have a noticeable effect on performance when compared to uncorrelated Gaussian noise.

Code Snippet

import torch
from elegantrl.run import train_and_evaluate
from elegantrl.config import Arguments
from elegantrl.train.config import build_env
from elegantrl.agents.AgentDDPG import AgentDDPG

train and save
args = Arguments(env=build_env('Pendulum-v0'), agent=AgentDDPG())
args.cwd = 'demo_Pendulum_DDPG'
args.env.target_return = -200
args.reward_scale = 2 ** -2
train_and_evaluate(args)

test
agent = AgentDDPG()
agent.init(args.net_dim, args.state_dim, args.action_dim)
agent.save_or_load_agent(cwd=args.cwd, if_save=False)

env = build_env('Pendulum-v0')
state = env.reset()
episode_reward = 0
for i in range(2 ** 10):
 action = agent.select_action(state)
 next_state, reward, done, _ = env.step(action)

 episode_reward += reward
 if done:
 print(f'Step {i:>6}, Episode return {episode_reward:8.3f}')
 break
 else:
 state = next_state
 env.render()

Parameters

	
class elegantrl.agents.AgentDDPG.AgentDDPG(net_dims: [<class 'int'>], state_dim: int, action_dim: int, gpu_id: int = 0, args: ~elegantrl.train.config.Config = <elegantrl.train.config.Config object>)

	DDPG(Deep Deterministic Policy Gradient)
“Continuous control with deep reinforcement learning”. T. Lillicrap et al.. 2015.”

net_dims: the middle layer dimension of MLP (MultiLayer Perceptron)
state_dim: the dimension of state (the number of state vector)
action_dim: the dimension of action (or the number of discrete action)
gpu_id: the gpu_id of the training device. Use CPU when cuda is not available.
args: the arguments for agent training. args = Config()

Networks

	
class elegantrl.agents.net.Actor(*args: Any, **kwargs: Any)

	

	
class elegantrl.agents.net.Critic(*args: Any, **kwargs: Any)

	

TD3

Twin Delayed DDPG (TD3) [https://arxiv.org/abs/1802.09477] is a successor of DDPG algorithm with the usage of three additional tricks. In TD3, the usage of Clipped Double-Q Learning, Delayed Policy Updates, and Target Policy Smoothing overcomes the overestimation of Q-values and smooths out Q-values along with changes in action, which shows improved performance over baseline DDPG. This implementation provides TD3 and supports the following extensions:

	Experience replay: ✔️

	Target network: ✔️

	Gradient clipping: ✔️

	Reward clipping: ❌

	Prioritized Experience Replay (PER): ✔️

Note

With respect to the clipped Double-Q learning, we use two Q-networks with shared parameters under a single Class CriticTwin. Such an implementation allows a lower computational and training time cost.

Warning

In the TD3 implementation, it contains a number of highly sensitive hyper-parameters, which requires the user to carefully tune these hyper-parameters to obtain a satisfied result.

Code Snippet

import torch
from elegantrl.run import train_and_evaluate
from elegantrl.config import Arguments
from elegantrl.train.config import build_env
from elegantrl.agents.AgentTD3 import AgentTD3

train and save
args = Arguments(env=build_env('Pendulum-v0'), agent=AgentTD3())
args.cwd = 'demo_Pendulum_TD3'
args.env.target_return = -200
args.reward_scale = 2 ** -2
train_and_evaluate(args)

test
agent = AgentTD3()
agent.init(args.net_dim, args.state_dim, args.action_dim)
agent.save_or_load_agent(cwd=args.cwd, if_save=False)

env = build_env('Pendulum-v0')
state = env.reset()
episode_reward = 0
for i in range(2 ** 10):
 action = agent.select_action(state)
 next_state, reward, done, _ = env.step(action)

 episode_reward += reward
 if done:
 print(f'Step {i:>6}, Episode return {episode_reward:8.3f}')
 break
 else:
 state = next_state
 env.render()

Parameters

	
class elegantrl.agents.AgentTD3.AgentTD3(net_dims: [<class 'int'>], state_dim: int, action_dim: int, gpu_id: int = 0, args: ~elegantrl.train.config.Config = <elegantrl.train.config.Config object>)

	Twin Delayed DDPG algorithm.
Addressing Function Approximation Error in Actor-Critic Methods. 2018.

Networks

	
class elegantrl.agents.net.Actor(*args: Any, **kwargs: Any)

	

	
class elegantrl.agents.net.CriticTwin(*args: Any, **kwargs: Any)

	

SAC

Soft Actor-Critic (SAC) [https://arxiv.org/abs/1801.01290] is an off-policy Actor-Critic algorithm for continuous action space. In SAC, it introduces an entropy regularization to the loss function, which has a close connection with the trade-off of the exploration and exploitation. In our implementation, we employ a learnable entropy regularization coefficienct to dynamic control the scale of the entropy, which makes it consistent with a pre-defined target entropy. SAC also utilizes Clipped Double-Q Learning (mentioned in TD3) to overcome the overestimation of Q-values. This implementation provides SAC and supports the following extensions:

	Experience replay: ✔️

	Target network: ✔️

	Gradient clipping: ✔️

	Reward clipping: ❌

	Prioritized Experience Replay (PER): ✔️

	Leanable entropy regularization coefficient: ✔️

Note

Inspired by the delayed policy update from TD3, we implement a modified version of SAC AgentModSAC with a dynamic adjustment of the frequency of the policy update. The adjustment is based on the loss of critic networks: a small loss leads to a high update frequency and vise versa.

Code Snippet

import torch
from elegantrl.run import train_and_evaluate
from elegantrl.config import Arguments
from elegantrl.train.config import build_env
from elegantrl.agents.AgentSAC import AgentSAC

train and save
args = Arguments(env=build_env('Pendulum-v0'), agent=AgentSAC())
args.cwd = 'demo_Pendulum_SAC'
args.env.target_return = -200
args.reward_scale = 2 ** -2
train_and_evaluate(args)

test
agent = AgentSAC()
agent.init(args.net_dim, args.state_dim, args.action_dim)
agent.save_or_load_agent(cwd=args.cwd, if_save=False)

env = build_env('Pendulum-v0')
state = env.reset()
episode_reward = 0
for i in range(2 ** 10):
 action = agent.select_action(state)
 next_state, reward, done, _ = env.step(action)

 episode_reward += reward
 if done:
 print(f'Step {i:>6}, Episode return {episode_reward:8.3f}')
 break
 else:
 state = next_state
 env.render()

Parameters

	
class elegantrl.agents.AgentSAC.AgentSAC(net_dims: [<class 'int'>], state_dim: int, action_dim: int, gpu_id: int = 0, args: ~elegantrl.train.config.Config = <elegantrl.train.config.Config object>)

	

	
class elegantrl.agents.AgentSAC.AgentModSAC(net_dims: [<class 'int'>], state_dim: int, action_dim: int, gpu_id: int = 0, args: ~elegantrl.train.config.Config = <elegantrl.train.config.Config object>)

	

Networks

	
class elegantrl.agents.net.ActorSAC(*args: Any, **kwargs: Any)

	

	
class elegantrl.agents.net.CriticTwin(*args: Any, **kwargs: Any)

	

A2C

Advantage Actor-Critic (A2C) [https://arxiv.org/abs/1602.01783] is a synchronous and deterministic version of Asynchronous Advantage Actor-Critic (A3C). It combines value optimization and policy optimization approaches. This implementation of the A2C algorithm is built on PPO algorithm for simplicity, and it supports the following extensions:

	Target network: ✔️

	Gradient clipping: ✔️

	Reward clipping: ❌

	Generalized Advantage Estimation (GAE): ✔️

	Discrete version: ✔️

Warning

The implementation of A2C serves as a pedagogical goal. For practitioners, we recommend using the PPO algorithm for training agents. Without the trust-region and clipped ratio, hyper-parameters in A2C, e.g., repeat_times, need to be fine-tuned to avoid performance collapse.

Code Snippet

import torch
from elegantrl.run import train_and_evaluate
from elegantrl.config import Arguments
from elegantrl.train.config import build_env
from elegantrl.agents.AgentA2C import AgentA2C

train and save
args = Arguments(env=build_env('Pendulum-v0'), agent=AgentA2C())
args.cwd = 'demo_Pendulum_A2C'
args.env.target_return = -200
args.reward_scale = 2 ** -2
train_and_evaluate(args)

test
agent = AgentA2C()
agent.init(args.net_dim, args.state_dim, args.action_dim)
agent.save_or_load_agent(cwd=args.cwd, if_save=False)

env = build_env('Pendulum-v0')
state = env.reset()
episode_reward = 0
for i in range(2 ** 10):
 action = agent.select_action(state)
 next_state, reward, done, _ = env.step(action)

 episode_reward += reward
 if done:
 print(f'Step {i:>6}, Episode return {episode_reward:8.3f}')
 break
 else:
 state = next_state
 env.render()

Parameters

	
class elegantrl.agents.AgentA2C.AgentA2C(net_dims: [<class 'int'>], state_dim: int, action_dim: int, gpu_id: int = 0, args: ~elegantrl.train.config.Config = <elegantrl.train.config.Config object>)

	A2C algorithm. “Asynchronous Methods for Deep Reinforcement Learning”. Mnih V. et al.. 2016.

	
class elegantrl.agents.AgentA2C.AgentDiscreteA2C(net_dims: [<class 'int'>], state_dim: int, action_dim: int, gpu_id: int = 0, args: ~elegantrl.train.config.Config = <elegantrl.train.config.Config object>)

	

Networks

	
class elegantrl.agents.net.ActorPPO(*args: Any, **kwargs: Any)

	

	
class elegantrl.agents.net.ActorDiscretePPO(*args: Any, **kwargs: Any)

	

	
class elegantrl.agents.net.CriticPPO(*args: Any, **kwargs: Any)

	

PPO

Proximal Policy Optimization (PPO) [https://arxiv.org/abs/1707.06347] is an on-policy Actor-Critic algorithm for both discrete and continuous action spaces. It has two primary variants: PPO-Penalty and PPO-Clip, where both utilize surrogate objectives to avoid the new policy changing too far from the old policy. This implementation provides PPO-Clip and supports the following extensions:

	Target network: ✔️

	Gradient clipping: ✔️

	Reward clipping: ❌

	Generalized Advantage Estimation (GAE): ✔️

	Discrete version: ✔️

Note

The surrogate objective is the key feature of PPO since it both regularizes the policy update and enables the reuse of training data.

A clear explanation of PPO algorithm and implementation in ElegantRL is available here [https://towardsdatascience.com/elegantrl-mastering-the-ppo-algorithm-part-i-9f36bc47b791].

Code Snippet

import torch
from elegantrl.run import train_and_evaluate
from elegantrl.config import Arguments
from elegantrl.train.config import build_env
from elegantrl.agents.AgentPPO import AgentPPO

train and save
args = Arguments(env=build_env('BipedalWalker-v3'), agent=AgentPPO())
args.cwd = 'demo_BipedalWalker_PPO'
args.env.target_return = 300
args.reward_scale = 2 ** -2
train_and_evaluate(args)

test
agent = AgentPPO()
agent.init(args.net_dim, args.state_dim, args.action_dim)
agent.save_or_load_agent(cwd=args.cwd, if_save=False)

env = build_env('BipedalWalker-v3')
state = env.reset()
episode_reward = 0
for i in range(2 ** 10):
 action = agent.select_action(state)
 next_state, reward, done, _ = env.step(action)

 episode_reward += reward
 if done:
 print(f'Step {i:>6}, Episode return {episode_reward:8.3f}')
 break
 else:
 state = next_state
 env.render()

Parameters

	
class elegantrl.agents.AgentPPO.AgentPPO(net_dims: [<class 'int'>], state_dim: int, action_dim: int, gpu_id: int = 0, args: ~elegantrl.train.config.Config = <elegantrl.train.config.Config object>)

	PPO algorithm. “Proximal Policy Optimization Algorithms”. John Schulman. et al.. 2017.

net_dims: the middle layer dimension of MLP (MultiLayer Perceptron)
state_dim: the dimension of state (the number of state vector)
action_dim: the dimension of action (or the number of discrete action)
gpu_id: the gpu_id of the training device. Use CPU when cuda is not available.
args: the arguments for agent training. args = Config()

	
explore_one_env(env, horizon_len: int, if_random: bool = False) → Tuple[torch.Tensor, ...]

	Collect trajectories through the actor-environment interaction for a single environment instance.

env: RL training environment. env.reset() env.step(). It should be a vector env.
horizon_len: collect horizon_len step while exploring to update networks
return: (states, actions, rewards, undones) for off-policy

env_num == 1
states.shape == (horizon_len, env_num, state_dim)
actions.shape == (horizon_len, env_num, action_dim)
logprobs.shape == (horizon_len, env_num, action_dim)
rewards.shape == (horizon_len, env_num)
undones.shape == (horizon_len, env_num)

	
explore_vec_env(env, horizon_len: int, if_random: bool = False) → Tuple[torch.Tensor, ...]

	Collect trajectories through the actor-environment interaction for a vectorized environment instance.

env: RL training environment. env.reset() env.step(). It should be a vector env.
horizon_len: collect horizon_len step while exploring to update networks
return: (states, actions, rewards, undones) for off-policy

states.shape == (horizon_len, env_num, state_dim)
actions.shape == (horizon_len, env_num, action_dim)
logprobs.shape == (horizon_len, env_num, action_dim)
rewards.shape == (horizon_len, env_num)
undones.shape == (horizon_len, env_num)

	
class elegantrl.agents.AgentPPO.AgentDiscretePPO(net_dims: [<class 'int'>], state_dim: int, action_dim: int, gpu_id: int = 0, args: ~elegantrl.train.config.Config = <elegantrl.train.config.Config object>)

	
	
explore_one_env(env, horizon_len: int, if_random: bool = False) → Tuple[torch.Tensor, ...]

	Collect trajectories through the actor-environment interaction for a single environment instance.

env: RL training environment. env.reset() env.step(). It should be a vector env.
horizon_len: collect horizon_len step while exploring to update networks
return: (states, actions, rewards, undones) for off-policy

env_num == 1
states.shape == (horizon_len, env_num, state_dim)
actions.shape == (horizon_len, env_num, action_dim)
logprobs.shape == (horizon_len, env_num, action_dim)
rewards.shape == (horizon_len, env_num)
undones.shape == (horizon_len, env_num)

	
explore_vec_env(env, horizon_len: int, if_random: bool = False) → Tuple[torch.Tensor, ...]

	Collect trajectories through the actor-environment interaction for a vectorized environment instance.

env: RL training environment. env.reset() env.step(). It should be a vector env.
horizon_len: collect horizon_len step while exploring to update networks
return: (states, actions, rewards, undones) for off-policy

states.shape == (horizon_len, env_num, state_dim)
actions.shape == (horizon_len, env_num, action_dim)
logprobs.shape == (horizon_len, env_num, action_dim)
rewards.shape == (horizon_len, env_num)
undones.shape == (horizon_len, env_num)

Networks

	
class elegantrl.agents.net.ActorPPO(*args: Any, **kwargs: Any)

	

	
class elegantrl.agents.net.ActorDiscretePPO(*args: Any, **kwargs: Any)

	

	
class elegantrl.agents.net.CriticPPO(*args: Any, **kwargs: Any)

	

REDQ

Randomized Ensembled Double Q-Learning: Learning Fast Without a Model (REDQ) [https://arxiv.org/abs/2101.05982] has
three carefully integrated ingredients to achieve its high performance:

	update-to-data (UTD) ratio >> 1.

	an ensemble of Q functions.

	in-target minimization across a random subset of Q functions.

This implementation is based on SAC.

Code Snippet

import torch
from elegantrl.run import train_and_evaluate
from elegantrl.config import Arguments
from elegantrl.train.config import build_env
from elegantrl.agents.AgentREDQ import AgentREDQ

train and save
args = Arguments(env=build_env('Hopper-v2'), agent=AgentREDQ())
args.cwd = 'demo_Hopper_REDQ'
train_and_evaluate(args)

test
agent = AgentREDQ()
agent.init(args.net_dim, args.state_dim, args.action_dim)
agent.save_or_load_agent(cwd=args.cwd, if_save=False)

env = build_env('Pendulum-v0')
state = env.reset()
episode_reward = 0
for i in range(125000):
 action = agent.select_action(state)
 next_state, reward, done, _ = env.step(action)

 episode_reward += reward
 if done:
 print(f'Step {i:>6}, Episode return {episode_reward:8.3f}')
 break
 else:
 state = next_state
 env.render()

Parameters

Networks

	
class elegantrl.agents.net.ActorSAC(*args: Any, **kwargs: Any)

	

	
class elegantrl.agents.net.Critic(*args: Any, **kwargs: Any)

	

MADDPG

Multi-Agent Deep Deterministic Policy Gradient (MADDPG) [https://arxiv.org/abs/1706.02275] is a multi-agent reinforcement learning algorithm for continuous action space:

	Implementation is based on DDPG ✔️

	Initialize n DDPG agents in MADDPG ✔️

Code Snippet

def update_net(self, buffer, batch_size, repeat_times, soft_update_tau):
 buffer.update_now_len()
 self.batch_size = batch_size
 self.update_tau = soft_update_tau
 rewards, dones, actions, observations, next_obs = buffer.sample_batch(self.batch_size)
 for index in range(self.n_agents):
 self.update_agent(rewards, dones, actions, observations, next_obs, index)

 for agent in self.agents:
 self.soft_update(agent.cri_target, agent.cri, self.update_tau)
 self.soft_update(agent.act_target, agent.act, self.update_tau)

 return

Parameters

	
class elegantrl.agents.AgentMADDPG.AgentMADDPG

	Bases: AgentBase

Multi-Agent DDPG algorithm. “Multi-Agent Actor-Critic for Mixed Cooperative-Competitive”. R Lowe. et al.. 2017.

	Parameters

	
	net_dim[int] – the dimension of networks (the width of neural networks)

	state_dim[int] – the dimension of state (the number of state vector)

	action_dim[int] – the dimension of action (the number of discrete action)

	learning_rate[float] – learning rate of optimizer

	gamma[float] – learning rate of optimizer

	n_agents[int] – number of agents

	if_per_or_gae[bool] – PER (off-policy) or GAE (on-policy) for sparse reward

	env_num[int] – the env number of VectorEnv. env_num == 1 means don’t use VectorEnv

	agent_id[int] – if the visible_gpu is ‘1,9,3,4’, agent_id=1 means (1,9,4,3)[agent_id] == 9

	
explore_one_env(env, target_step) → list

	Exploring the environment for target_step.
param env: the Environment instance to be explored.
param target_step: target steps to explore.

	
save_or_load_agent(cwd, if_save)

	save or load training files for Agent

	Parameters

	
	cwd – Current Working Directory. ElegantRL save training files in CWD.

	if_save – True: save files. False: load files.

	
select_actions(states)

	Select continuous actions for exploration

	Parameters

	state – states.shape==(n_agents,batch_size, state_dim,)

	Returns

	actions.shape==(n_agents,batch_size, action_dim,), -1 < action < +1

	
update_agent(rewards, dones, actions, observations, next_obs, index)

	Update the single agent neural networks, called by update_net.

	Parameters

	
	rewards – reward list of the sampled buffer

	dones – done list of the sampled buffer

	actions – action list of the sampled buffer

	observations – observation list of the sampled buffer

	next_obs – next_observation list of the sample buffer

	index – ID of the agent

	
update_net(buffer, batch_size, repeat_times, soft_update_tau)

	Update the neural networks by sampling batch data from ReplayBuffer.

	Parameters

	
	buffer – the ReplayBuffer instance that stores the trajectories.

	batch_size – the size of batch data for Stochastic Gradient Descent (SGD).

	repeat_times – the re-using times of each trajectory.

	soft_update_tau – the soft update parameter.

Networks

	
class elegantrl.agents.net.Actor(*args: Any, **kwargs: Any)

	

	
class elegantrl.agents.net.Critic(*args: Any, **kwargs: Any)

	

MATD3

Multi-Agent TD3 (MATD3) [https://arxiv.org/abs/1910.01465] uses double centralized critics to reduce overestimation bias in multi-agent environments.
It combines the improvements of TD3 with MADDPG.

Code Snippet

def update_net(self, buffer, batch_size, repeat_times, soft_update_tau):
 """
 Update the neural networks by sampling batch data from ``ReplayBuffer``.

 :param buffer: the ReplayBuffer instance that stores the trajectories.
 :param batch_size: the size of batch data for Stochastic Gradient Descent (SGD).
 :param repeat_times: the re-using times of each trajectory.
 :param soft_update_tau: the soft update parameter.
 :return Nonetype
 """
 buffer.update_now_len()
 self.batch_size = batch_size
 self.update_tau = soft_update_tau
 rewards, dones, actions, observations, next_obs = buffer.sample_batch(self.batch_size)
 for index in range(self.n_agents):
 self.update_agent(rewards, dones, actions, observations, next_obs, index)

 for agent in self.agents:
 self.soft_update(agent.cri_target, agent.cri, self.update_tau)
 self.soft_update(agent.act_target, agent.act, self.update_tau)

 return

Parameters

Networks

	
class elegantrl.agents.net.Actor(*args: Any, **kwargs: Any)

	

	
class elegantrl.agents.net.CriticTwin(*args: Any, **kwargs: Any)

	

QMix

QMIX: Monotonic Value Function Factorisation for Deep Multi-Agent Reinforcement Learning [https://arxiv.org/abs/1803.11485] is a value-based method that can train decentralized policies in a centralized end-to-end fashion. QMIX employs a network that estimates joint action-values as a complex non-linear combination of per-agent values that condition only on local observations.

	Experience replay: ✔️

	Target network: ✔️

	Gradient clipping: ❌

	Reward clipping: ❌

	Prioritized Experience Replay (PER): ✔️

	Ornstein–Uhlenbeck noise: ❌

Code Snippet

def train(self, batch, t_env: int, episode_num: int, per_weight=None):
 rewards = batch["reward"][:, :-1]
 actions = batch["actions"][:, :-1]
 terminated = batch["terminated"][:, :-1].float()
 mask = batch["filled"][:, :-1].float()
 mask[:, 1:] = mask[:, 1:] * (1 - terminated[:, :-1])
 avail_actions = batch["avail_actions"]

 self.mac.agent.train()
 mac_out = []
 self.mac.init_hidden(batch.batch_size)
 for t in range(batch.max_seq_length):
 agent_outs = self.mac.forward(batch, t=t)
 mac_out.append(agent_outs)
 mac_out = th.stack(mac_out, dim=1)

 chosen_action_qvals = th.gather(mac_out[:, :-1], dim=3, index=actions).squeeze(3) # Remove the last dim
 chosen_action_qvals_ = chosen_action_qvals

 with th.no_grad():
 self.target_mac.agent.train()
 target_mac_out = []
 self.target_mac.init_hidden(batch.batch_size)
 for t in range(batch.max_seq_length):
 target_agent_outs = self.target_mac.forward(batch, t=t)
 target_mac_out.append(target_agent_outs)

 target_mac_out = th.stack(target_mac_out, dim=1) # Concat across time

 mac_out_detach = mac_out.clone().detach()
 mac_out_detach[avail_actions == 0] = -9999999
 cur_max_actions = mac_out_detach.max(dim=3, keepdim=True)[1]
 target_max_qvals = th.gather(target_mac_out, 3, cur_max_actions).squeeze(3)

 target_max_qvals = self.target_mixer(target_max_qvals, batch["state"])

 if getattr(self.args, 'q_lambda', False):
 qvals = th.gather(target_mac_out, 3, batch["actions"]).squeeze(3)
 qvals = self.target_mixer(qvals, batch["state"])

 targets = build_q_lambda_targets(rewards, terminated, mask, target_max_qvals, qvals,
 self.args.gamma, self.args.td_lambda)
 else:
 targets = build_td_lambda_targets(rewards, terminated, mask, target_max_qvals,
 self.args.n_agents, self.args.gamma, self.args.td_lambda)

 chosen_action_qvals = self.mixer(chosen_action_qvals, batch["state"][:, :-1])

 td_error = (chosen_action_qvals - targets.detach())
 td_error2 = 0.5 * td_error.pow(2)

 mask = mask.expand_as(td_error2)
 masked_td_error = td_error2 * mask

 if self.use_per:
 per_weight = th.from_numpy(per_weight).unsqueeze(-1).to(device=self.device)
 masked_td_error = masked_td_error.sum(1) * per_weight

 loss = L_td = masked_td_error.sum() / mask.sum()

 self.optimiser.zero_grad()
 loss.backward()
 grad_norm = th.nn.utils.clip_grad_norm_(self.params, self.args.grad_norm_clip)
 self.optimiser.step()

Parameters

Networks

	
class elegantrl.agents.net.Critic(*args: Any, **kwargs: Any)

	

VDN

Value Decomposition Networks (VDN) [https://arxiv.org/abs/1706.05296] trains individual agents with a novel value decomposition network architecture, which learns to decompose the team value function into agent-wise value functions.

Code Snippet

def train(self, batch, t_env: int, episode_num: int):

 # Get the relevant quantities
 rewards = batch["reward"][:, :-1]
 actions = batch["actions"][:, :-1]
 terminated = batch["terminated"][:, :-1].float()
 mask = batch["filled"][:, :-1].float()
 mask[:, 1:] = mask[:, 1:] * (1 - terminated[:, :-1])
 avail_actions = batch["avail_actions"]

 # Calculate estimated Q-Values
 mac_out = []
 self.mac.init_hidden(batch.batch_size)
 for t in range(batch.max_seq_length):
 agent_outs = self.mac.forward(batch, t=t)
 mac_out.append(agent_outs)
 mac_out = th.stack(mac_out, dim=1) # Concat over time

 # Pick the Q-Values for the actions taken by each agent
 chosen_action_qvals = th.gather(mac_out[:, :-1], dim=3, index=actions).squeeze(3) # Remove the last dim

 # Calculate the Q-Values necessary for the target
 target_mac_out = []
 self.target_mac.init_hidden(batch.batch_size)
 for t in range(batch.max_seq_length):
 target_agent_outs = self.target_mac.forward(batch, t=t)
 target_mac_out.append(target_agent_outs)

Parameters

Networks

MAPPO

Multi-Agent Proximal Policy Optimization (MAPPO) [https://arxiv.org/abs/2103.01955] is a variant of PPO which is specialized for multi-agent settings. MAPPO achieves surprisingly strong performance in two popular multi-agent testbeds: the particle-world environments and the Starcraft multi-agent challenge.

	Shared network parameter for all agents ✔️

MAPPO achieves strong results while exhibiting comparable sample efficiency.

Code Snippet

def ppo_update(self, sample, update_actor=True):

 share_obs_batch, obs_batch, rnn_states_batch, rnn_states_critic_batch, actions_batch, \
 value_preds_batch, return_batch, masks_batch, active_masks_batch, old_action_log_probs_batch, \
 adv_targ, available_actions_batch = sample

 old_action_log_probs_batch = check(old_action_log_probs_batch).to(**self.tpdv)
 adv_targ = check(adv_targ).to(**self.tpdv)
 value_preds_batch = check(value_preds_batch).to(**self.tpdv)
 return_batch = check(return_batch).to(**self.tpdv)
 active_masks_batch = check(active_masks_batch).to(**self.tpdv)

 # Reshape to do in a single forward pass for all steps
 values, action_log_probs, dist_entropy = self.policy.evaluate_actions(share_obs_batch,
 obs_batch,
 rnn_states_batch,
 rnn_states_critic_batch,
 actions_batch,
 masks_batch,
 available_actions_batch,
 active_masks_batch)
 # actor update
 imp_weights = torch.exp(action_log_probs - old_action_log_probs_batch)

 surr1 = imp_weights * adv_targ
 surr2 = torch.clamp(imp_weights, 1.0 - self.clip_param, 1.0 + self.clip_param) * adv_targ

Parameters

Networks

Configuration: config.py

Arguments

The Arguments class contains all parameters of the training process, including environment setup, model training, model evaluation, and resource allocation. It provides users an unified interface to customize the training process.

The class should be initialized at the start of the training process. For example,

from elegantrl.train.config import Arguments
from elegantrl.agents.AgentPPO import AgentPPO
from elegantrl.train.config import build_env
import gym

args = Arguments(build_env('Pendulum-v1'), AgentPPO())

The full list of parameters in Arguments:

Environment registration

	
elegantrl.train.config.build_env(env_class=None, env_args: Optional[dict] = None, gpu_id: int = -1)

	

Utils

	
elegantrl.train.config.kwargs_filter(function, kwargs: dict) → dict

	

Run: run.py

In run.py, we provide functions to wrap the training (and evaluation) process.

In ElegantRL, users follow a two-step procedure to train an agent in a lightweight and automatic way.

	Initializing the agent and environment, and setting hyper-parameters up in Arguments.

	Passing the Arguments to functions for the training process, e.g., train_and_evaluate for single-process training and train_and_evaluate_mp for multi-process training.

Let’s look at a demo for the simple two-step procedure.

from elegantrl.train.config import Arguments
from elegantrl.train.run import train_and_evaluate, train_and_evaluate_mp
from elegantrl.envs.Chasing import ChasingEnv
from elegantrl.agents.AgentPPO import AgentPPO

Step 1
args = Arguments(agent=AgentPPO(), env_func=ChasingEnv)

Step 2
train_and_evaluate_mp(args)

Single-process

Multi-process

Utils

Worker: worker.py

Deep reinforcement learning (DRL) employs a trial-and-error manner to collect training data (transitions) from agent-environment interactions, along with the learning procedure. ElegantRL utilizes Worker to generate transitions and achieves worker parallelism, thus greatly speeding up the data collection.

Implementations

Replay Buffer: replay_buffer.py

ElegantRL provides ReplayBuffer to store sampled transitions.

In ElegantRL, we utilize Worker for exploration (data sampling) and Learner for exploitation (model learning), and we view such a relationship as a “producer-consumer” model, where a worker produces transitions and a learner consumes, and a learner updates the actor net at worker to produce new transitions. In this case, the ReplayBuffer is the storage buffer that connects the worker and learner.

Each transition is in a format (state, (reward, done, action)).

Note

We allocate the ReplayBuffer on continuous RAM for high performance training. Since the collected transitions are packed in sequence, the addressing speed increases dramatically when a learner randomly samples a batch of transitions.

Implementations

	
class elegantrl.train.replay_buffer.ReplayBuffer(max_size: int, state_dim: int, action_dim: int, gpu_id: int = 0, num_envs: int = 1, if_use_per: bool = False, args: ~elegantrl.train.config.Config = <elegantrl.train.config.Config object>)

	
	
per_beta

	PER. Prioritized Experience Replay. Section 4
alpha, beta = 0.7, 0.5 for rank-based variant
alpha, beta = 0.6, 0.4 for proportional variant

Multiprocessing

Initialization

Utils

Evaluator: evaluator.py

In the course of training, ElegantRL provide an evaluator to periodically evaluate agent’s performance and save models.

	For agent evaluation, the evaluator runs agent’s actor (policy) network on the testing environment and outputs corresponding scores. Commonly used performance metrics are mean and variance of episodic rewards. The score is useful in following two cases:
	
	Case 1: the score serves as a goal signal. When the score reaches the target score, it means that the goal of the task is achieved.

	Case 2: the score serves as a criterion to determine overfitting of models. When the score continuously drops, we can terminate the training process early to mitigate the performance collapse and the waste of computing power brought by overfitting.

Note

ElegantRL supports a tournament-based ensemble training scheme to empower the population-based training (PBT). We maintain a leaderboard to keep track of agents with high scores and then perform a tournament-based evolution among these agents. In this case, the score from the evaluator serves as a metric for leaderboard.

	For model saving, the evaluator saves following three types of files:
	
	actor.pth: actor (policy) network of the agent.

	plot_learning_curve.jpg: learning curve of the agent.

	recorder.npy: log file, including total training steps, reward average, reward standard deviation, reward exp, actor loss, and critic loss.

We implement the evaluator as a microservice, which can be ran as an independent process. When an evaluator is running, it can automatically monitors parallel agents, and provide evaluation when any agent needs, and communicate agent information with the leaderboard.

Implementations

	
class elegantrl.train.evaluator.Evaluator(cwd: str, env, args: Config, if_tensorboard: bool = False)

	

Utils

FAQ

	Version

	1.0

	Date

	12-31-2021

	Contributors

	Steven Li, Xiao-Yang Liu

Description

This document contains the most frequently asked questions related to the ElegantRL Library, based on questions posted on the slack channels and Github [https://github.com/AI4Finance-Foundation/ElegantRL] issues.

Outline

	Section 1 Where to start?

	Section 2 What to do when you experience problems?

	Section 3 Most frequently asked questions related to the ElegantRL Library

	Section 4 References for diving deep into Deep Reinforcement Learning (DRL)

	Subsection 4.1 Open-source softwares and materials

	Subsection 4.2 DRL algorithms

	Subsection 4.2 Other resources

	Section 5 Common issues/bugs

Section 1 Where to start?

	Get started with ElegantRL-helloworld, a lightweight and stable subset of ElegantRL.

	Read the introductary post [https://towardsdatascience.com/elegantrl-a-lightweight-and-stable-deep-reinforcement-learning-library-95cef5f3460b] of ElegantRL-helloworld.

	Read the post [https://towardsdatascience.com/elegantrl-mastering-the-ppo-algorithm-part-i-9f36bc47b791] to learn how an algorithm is implemented.

	Read the posts (Part I [https://medium.com/mlearning-ai/elegantrl-demo-stock-trading-using-ddpg-part-i-e77d7dc9d208], Part II [https://medium.com/mlearning-ai/elegantrl-demo-stock-trading-using-ddpg-part-ii-d3d97e01999f]) to learn a demo of ElegantRL-helloworld on a stock trading task.

	Read the post [https://towardsdatascience.com/elegantrl-podracer-scalable-and-elastic-library-for-cloud-native-deep-reinforcement-learning-bafda6f7fbe0] and the paper [https://arxiv.org/abs/2112.05923] that describe our cloud solution, ElegantRL-Podracer.

	Run the Colab-based notebooks on simple Gym environments.

	Install the library following the instructions at the official Github repo [https://github.com/AI4Finance-Foundation/ElegantRL].

	Run the demos from MuJoCo to Isaac Gym provided in the library folder [https://github.com/AI4Finance-Foundation/ElegantRL/tree/master/elegantrl].

	Enter on the AI4Finance slack [https://join.slack.com/t/ai4financeworkspace/shared_invite/zt-kq0c9het-FCSU6Y986OnSw6Wb5EkEYw].

Section 2 What to do when you experience problems?

	If any questions arise, please follow this sequence of activities:

	Check if it is not already answered on this FAQ

	Check if it is not posted on the Github repo issues [https://github.com/AI4Finance-Foundation/ElegantRL/issues].

	If you cannot find your question, please report it as a new issue or ask it on the AI4Finance slack (Our members will get to you ASAP).

Section 3 Most frequently asked questions related to the ElegantRL Library

	What kinds of environment can I use?

ElegantRL supports any gym-style environment and provides wrappers for MuJoCo and Isaac Gym.

	How can I use a VecEnv?

You can use VecEnv [https://elegantrl.readthedocs.io/en/latest/examples/Creating_VecEnv.html] imported from Isaac Gym or write your own VecEnv by yourself. There is no VecEnv wrapper to process a non-VecEnv to VecEnv.

	What is ElegantRL-helloworld?

It is a tutorial-level implementation for users (e.g., beginners) who do not have a demand for parallel computing.

	What DRL algorithms can I use with ElegantRL?

In the folder [https://github.com/AI4Finance-Foundation/ElegantRL/tree/master/elegantrl/agents], we currently have DQN, DDQN, DDPG, TD3, SAC, A2C, REDQ, and PPO.

	What kinds of parallelism does ElegantRL support?

ElegantRL support parallelism of DRL algorithms at multiple levels, including agent parallelism of population-based training and worker-learner parallelism of a single agent.

	What is agent parallelism?

Agent parallelism is to train hundreds of agents in parallel through population-based training (PBT), which offers a flexibility for ensemble methods.

	What is worker parallelism?

Worker parallelism is to generate transitions in parallel, thus accelerating the data collection. We currently support two different parallelism to adapt different types of environments.

	use a VecEnv [https://elegantrl.readthedocs.io/en/latest/examples/Creating_VecEnv.html] to generate transitions in batch.

	if the environment is not a VecEnv, use multiple workers to generate transitions in parallel.

	What is learner parallelism?

Learner parallelism is to train multiple-critics and multiple actors running in parallel for ensemble DRL methods. Due to the stochastic nature of the training process (e.g., random seeds), an ensemble DRL algorithm increases the diversity of the data collection, improves the stability of the learning process, and reduces the overestimation bias.

	What kinds of ensemble methods can I use?

We currently support three ensemble methods, which are weighted average, model fusion, and tournament-based ensemble training scheme.

	What is tournament-based ensemble training scheme?

Tournament-based ensemble training scheme is our cloud orchestration mechanism, scheduling the interactions between a leaderboard and a training pool with hundreds of agents (pods). More details are available in the post [https://towardsdatascience.com/elegantrl-podracer-scalable-and-elastic-library-for-cloud-native-deep-reinforcement-learning-bafda6f7fbe0] and the paper [https://arxiv.org/abs/2112.05923].

	Can I use a pre-trained model?

Yes, you can load a model to continue the training. A tutorial is coming soon.

	Can I use Tensorboard for logging?

No, we cannot support Tensorboard.

	Does ElegantRL supports multi-agent reinforcement learning (MARL)?

Yes, we are implementing MARL algorithms and adapting them to the massively parallel framework. Currently, we provide several MARL algorithms, such as QMix, MADDPG, MAPPO, and VDN. The tutorials are coming soon.

	Does ElegantRL supports GPU training?

ElegantRL supports flexible resource allocation from zero to hundreds of GPUs.

	Can I use ElegantRL without GPUs?

Of course! You can use ElegantRL-helloworld for non-GPU training or use ElegantRL by setting GPU_ids to None (you cannot use GPU-accelerated VecEnv in this case).

	How can I contribute to the development?

You can participate on the slack channels, check the current issues and the roadmap, and help any way you can (sharing the library with others, testing the library of different applications, contributing with code development, etc).

Section 4 References for diving deep into Deep Reinforcement Learning (DRL)

Subsection 4.1 Open-source softwares and materials

	
	OpenAI Gym
	https://gym.openai.com/

	
	MuJoCo
	https://mujoco.org/

	
	Isaac Gym
	https://developer.nvidia.com/isaac-gym

	
	OpenAI Spinning Up
	https://spinningup.openai.com/en/latest/

	
	Stable Baselines3
	https://github.com/DLR-RM/stable-baselines3

	
	Ray RLlib
	https://docs.ray.io/en/master/rllib.html

	
	Tianshou
	https://github.com/thu-ml/tianshou

	
	ChainerRL
	https://github.com/chainer/chainerrl

	
	MushroomRL
	https://github.com/MushroomRL/mushroom-rl/tree/master

	
	ACME
	https://github.com/deepmind/acme

	
	PFRL
	https://github.com/pfnet/pfrl

	
	SURREAL
	https://github.com/SurrealAI/surreal

	
	rlpyt
	https://github.com/astooke/rlpyt

	
	MAlib
	https://github.com/sjtu-marl/malib

	
	Policy gradient algorithms
	https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html

Subsection 4.2 DRL algorithms

	David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of Go without human knowledge. Nature, 550(7676):354–359, 2017.

	
	Mnih, K. Kavukcuoglu, D. Silver, A. Graves, Ioannis Antonoglou, Daan Wierstra, and Martin A. Riedmiller. Playing atari with deep reinforcement learning. ArXiv, abs/1312.5602, 2013.

	
	
	Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-learning. ArXiv, abs/1509.06461, 2016.

	Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In ICLR, 2016.

	
	Schulman, F. Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization algorithms. ArXiv, abs/1707.06347, 2017.

	Matteo Hessel, Joseph Modayil, H. V. Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan Horgan,Bilal Piot, Mohammad Gheshlaghi Azar, and David Silver. Rainbow: Combining improvements in deepreinforcement learning. In AAAI, 2018.

	Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-critic methods. In International Conference on Machine Learning, pages 1587–1596. PMLR, 2018.

	Tuomas Haarnoja, Aurick Zhou, P. Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor. In ICML, 2018.

	Xinyue Chen, Che Wang, Zijian Zhou, and Keith W. Ross. Randomized ensembled double q-learning: Learning fast without a model. In International Conference on Learning Representations, 2021.

Subsection 4.2 Other resources

	Richard S. Sutton and Andrew G. Barto. Reinforcement learning: An introduction. IEEE Transactions on Neural Networks, 16:285–286, 2005.

	Arun Nair, Praveen Srinivasan, Sam Blackwell, Cagdas Alcicek, Rory Fearon, Alessandro De Maria, Vedavyas Panneershelvam, Mustafa Suleyman, Charlie Beattie, Stig Petersen, Shane Legg, Volodymyr Mnih, Koray Kavukcuoglu, and David Silver. Massively parallel methods for deep reinforcement learning. ArXiv, abs/1507.04296, 2015.

	Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard Liaw, Eric Liang, Melih Elibol, Zongheng Yang, William Paul, Michael I Jordan, et al. Ray: A distributed framework for emerging ai applications. In 13th USENIX Symposium on Operating Systems Design and Implementation (OSDI), pages 561–577, 2018.

	Lasse Espeholt, Rapha¨el Marinier, Piotr Stanczyk, Ke Wang, and Marcin Michalski. Seed rl: Scalable and efficient deep-rl with accelerated central inference. In International Conference on Machine Learning. PMLR, 2019.

	Agrim Gupta, Silvio Savarese, Surya Ganguli, and Fei-Fei Li. Embodied intelligence via learning and evolution. Nature Communications, 2021.

	Matteo Hessel, Manuel Kroiss, Aidan Clark, Iurii Kemaev, John Quan, Thomas Keck, Fabio Viola, and Hado van Hasselt. Podracer architectures for scalable reinforcement learning. arXiv preprint arXiv:2104.06272, 2021.

	Zechu Li, Xiao-Yang Liu, Jiahao Zheng, Zhaoran Wang, Anwar Walid, and Jian Guo. FinRL-podracer: High performance and scalable deep reinforcement learning for quantitative finance. ACM International Conference on AI in Finance (ICAIF), 2021.

	Nikita Rudin, David Hoeller, Philipp Reist, and Marco Hutter. Learning to walk in minutes using massively parallel deep reinforcement learning. In Conference on Robot Learning, 2021.

	Brijen Thananjeyan, Kirthevasan Kandasamy, Ion Stoica, Michael I. Jordan, Ken Goldberg, and Joseph Gonzalez. Resource allocation in multi-armed bandit exploration: Overcoming nonlinear scaling with adaptive parallelism. In ICML, 2021.

Section 5 Common issues/bugs

	
	When running Isaac Gym, found error ImportError: libpython3.7m.so.1.0: cannot open shared object file: No such file or directory:
	Run the following code in bash to add the path of Isaac Gym conda environment.

export LD_LIBRARY_PATH=$PATH$

For example, the name of Isaac Gym conda environment is rlgpu:

export LD_LIBRARY_PATH=/xfs/home/podracer_steven/anaconda3/envs/rlgpu/lib

Index

 A
 | B
 | C
 | E
 | G
 | K
 | P
 | Q
 | R
 | S
 | U

A

 	
 	Actor (class in elegantrl.agents.net), [1], [2], [3]

 	ActorDiscretePPO (class in elegantrl.agents.net), [1]

 	ActorPPO (class in elegantrl.agents.net), [1]

 	ActorSAC (class in elegantrl.agents.net), [1], [2]

 	AgentA2C (class in elegantrl.agents.AgentA2C)

 	AgentDDPG (class in elegantrl.agents.AgentDDPG)

 	AgentDiscreteA2C (class in elegantrl.agents.AgentA2C)

 	
 	AgentDiscretePPO (class in elegantrl.agents.AgentPPO)

 	AgentDQN (class in elegantrl.agents.AgentDQN)

 	AgentMADDPG (class in elegantrl.agents.AgentMADDPG)

 	AgentModSAC (class in elegantrl.agents.AgentSAC)

 	AgentPPO (class in elegantrl.agents.AgentPPO)

 	AgentSAC (class in elegantrl.agents.AgentSAC)

 	AgentTD3 (class in elegantrl.agents.AgentTD3)

B

 	
 	build_env() (in module elegantrl.train.config)

C

 	
 	Critic (class in elegantrl.agents.net), [1], [2], [3], [4]

 	
 	CriticPPO (class in elegantrl.agents.net), [1]

 	CriticTwin (class in elegantrl.agents.net), [1], [2]

E

 	
 	Evaluator (class in elegantrl.train.evaluator)

 	explore_one_env() (elegantrl.agents.AgentDQN.AgentDQN method)

 	(elegantrl.agents.AgentMADDPG.AgentMADDPG method)

 	(elegantrl.agents.AgentPPO.AgentDiscretePPO method)

 	(elegantrl.agents.AgentPPO.AgentPPO method)

 	
 	explore_vec_env() (elegantrl.agents.AgentDQN.AgentDQN method)

 	(elegantrl.agents.AgentPPO.AgentDiscretePPO method)

 	(elegantrl.agents.AgentPPO.AgentPPO method)

G

 	
 	get_obj_critic_per() (elegantrl.agents.AgentDQN.AgentDQN method)

 	
 	get_obj_critic_raw() (elegantrl.agents.AgentDQN.AgentDQN method)

K

 	
 	kwargs_filter() (in module elegantrl.train.config)

P

 	
 	per_beta (elegantrl.train.replay_buffer.ReplayBuffer attribute)

Q

 	
 	QNet (class in elegantrl.agents.net)

 	QNetDuel (class in elegantrl.agents.net)

 	
 	QNetTwin (class in elegantrl.agents.net)

 	QNetTwinDuel (class in elegantrl.agents.net)

R

 	
 	ReplayBuffer (class in elegantrl.train.replay_buffer)

S

 	
 	save_or_load_agent() (elegantrl.agents.AgentMADDPG.AgentMADDPG method)

 	
 	select_actions() (elegantrl.agents.AgentMADDPG.AgentMADDPG method)

U

 	
 	update_agent() (elegantrl.agents.AgentMADDPG.AgentMADDPG method)

 	
 	update_net() (elegantrl.agents.AgentMADDPG.AgentMADDPG method)

FAQ

Q1: With respect to on-policy and off-policy algorithms, which has better performance in different scenarios?

This is a very difficult question, but I will try to answer it.

Let’s discuss it in three metrices:

	Off-policy is better in sample efficiency than on-policy. (The agent achieves higher cumulative rewards in a given total training steps.).

	On-policy performs better in training speed than off-policy. (The agent achieves higher cumulative rewards in a given total training time.).

	On-policy performs better in training stablility than off-policy. (Train agent overs serval runs after the learning curve converges. A higher training stability algorithm has a smaller the variance of cumulative rewards)

	Convergence of cumulative rewards (Train the agent and compare the highest cumulative rewards after the learning curve converges).
- Off-policy performs better in convergence of cumulative rewards if we can provide sufficient running memoery.
- On-policy performs better in convergence of cumulative rewards if we can not provide sufficient running memoery.

Background about on-policy and off-policy:
- Behavior policy: collects data for training and explores in the environment.
- Target policy: used to update the Q value.
- On-policy algorithm: the target policy must be the behavior policy. So the training data in experimence replay buffer should be collected by behavior policy.
- Off-policy algorithm: the target policy can be any policies. So the training data in experimence replay buffer could be collected by any policies.

Sample efficiency:

If we focus on sample efficiency as a performance metric, off-policy is better that on-policy in general.

On-policy algorithms use the data collected by the behavior policy to update the target policy. The on-policy algorithms keep updating the target policy, until the difference between the behavior policy and target policy is so large that they cannot be considered as the same policy.

After updating the target policy, the on-policy algorithms delete the previous training data in replay buffer, and re-collect the data and treat the latest target policy as the behavior policy.

The target policy of off-policy algorithms can be any policies. So the off-policy algorithm do not need to delete the old training data unless the data in experimence replay buffer is too much and the capacity limit is reached.

So off-policy has higher sample efficiency than on-policy in general. Some RL tasks (e.g. atari game) that require sufficient exploration in order to find a policy with higher cumulative rewards. For such tasks, the off-policy algorithms can achieve better performance with higher sample efficiency, because off-policy algorithms maintain a larger expermience replay buffer than on-policy algorithms.

Training speed:

A typical training pipeline of RL:
1. Behavior policy explores in environment and collects the data for the experimence replay buffer.
2. Using the data in experimence replay buffer to update the target policy and value network.
3. Remove the old data from the experience replay buffer according to the requirements of the algorithms.
4. Repeat step 1 to step 3 until the training stops.

Off-policy will maintain a larger expermience replay buffer (training set) than on-policy.
In step 2, the off-policy algorithms will training its networks in a larger training set. So the off-policy algorithm take longer to train the networks, which slows down its training speed.

When the time consumed in the step 1 is relatively short (i.e., the training environment runs fast enough), the disadvantage of low sample efficiency of on-policy will be non-obvious. And the step 2 of the on-policy algorithm is shorter than the off-policy. Ultimately, the training speed of on-policy is significantly faster when using the same computing device.

Training stability

On-policy performs better in training stablility than off-policy in general. There are 2 reasons:
- The value network of on-policy just need to predict the Q value of behavior policy, which is easier than off-poicy value network predict the Q value of any policy.
- The behavior policy network of on-policy explores in environment and collect the data for the experimence replay buffer. And the target network is same as the behavior policy. The on-policy algorithm searches for new policies in the neighborhood of behavior policy, so on-policy training is more stable than off-policy because the difference between behavior policy and target policy is smaller.

Convergence of cumulative rewards:

We can train the agent and compare the cumulative rewards after the learning curve converges. If an algorithm searches for a policy with higher cumulative rewards, we said that it is better.

The off-policy algorithm search for its policy using more data, because off-policy will maintain a larger experimence replay buffer than on-policy. So the off-policy algorithm is more likely to jump out of the local optimum that the on-policy cannot jump out of.

In this case, off-policy performs better and get a higher convergence cumulative rewards.

In practice, we cannot provide a large enough experience replay buffer for training because the real-world constraints such as memory.
- The environment or hehavior policy is so stochastic that it required a considerable amount of experimence replay buffer to hold these data.
- The experimence replay buffer will always hold duplicate data and take up valuable memory space, and the cache space cannot be maximally utilized.

Off-policy will maintain a larger expermience replay buffer (training set) than on-policy.
In other words, the on-policy algorithm is able to use less running memory to solve the same RL task than the off-policy algorithm. If we cannot provide sufficient running memory for the experimence replay buffer, the on-policy algorithm instead obtains a better convergence score than the off-policy algorithm.

In this case, on-policy performs better and get a higher convergence cumulative rewards.

NOTICE: When we training a DEEP reinforcement learning algorithm, We need running memory to store the data of experimence replay buffer, where memory means the memory of a single GPU and not the memory plugged into the motherboard for the CPU (RAM).

In theory, of course, it is possible to temporarily store data from GPU memory into memory on the motherboard for the CPU, or even use the CPU to train neural networks, but that would be very slow.

Q2: Is it possible to design an off-policy actor-critic algorithm with only the state input (no action input)? If not, can you explain why?

It is impossible.

Background knowledge about on-policy and off-policy:
- Behavior policy: The policy which explored in the environment and collected data for training is behavior policy.
- Target policy: The policy which used to update the Q value is target policy.
- On-policy algorithm: the target policy must be the behavior policy. So the training data in experimence replay buffer should be collected by behavior policy.
- Off-policy algorithm: the target policy can be any policies. So the training data in experimence replay buffer could be collected by any policies.

Let’s discuss the critic network of these algorithms:
- The critic network (value network) estimates the Q value of the policy.
- The critic network of on-policy algorithms (state value network) estimates the Q value of the behavior policy using the data collected by behavior policy.
- The critic network of off-policy algorithms (state-action value network) estimates the Q value of the target policy using the data collected by behavior policies.

Why the critic network of off-policy algorithms (state-action value network) estimates the Q value of the any policy but state value network can not do this?

The information of behavior policy can be sent to state-action value network via the `action` input.
By comparison, the state value network can only estimate the Q value of behavior policy, so we can not disign an off-policy algorithm with only the state input (no action input).

 FAQ

问题 1：在强化学习代码中，对log值裁剪到 -20 到 +2 之间是在进行什么操作？为什么要裁剪到这两个值之间？

在强化学习中，我们举两类对log值进行裁剪的例子：

	对随机策略的动作的高斯分布的方差的log值 action_std_log 进行裁剪

	对正态分布中对应的概率的log值 (log probability) logprob 进行裁剪

简单说，就是相对于正态分布 N~(0, 1) 来说，一个高斯分布的方差的log值如果超过 (-20, +2) 这个区间，那么：

	如果log值小于 -20，那么这个高斯分布的方差特别小，相当于没有方差，接近于一个确定的数值。

	如果log值大于 +2，那么这个高斯分布的方差特别大，相当于在接近均值附近是均匀分布。

有空我就展开讲一讲。

对随机策略的动作的高斯分布的方差的log值 action_std_log 进行裁剪

对应代码是 action_std = self.net_action_std(t_tmp).clip(-20, 2).exp(), 可以在 elegantrl/net.py 里找到。

SAC算法的 alpha_log 也能进行类似的裁剪

还可以讲一讲 强化学习里，把权重处理成 log 形式再进行梯度优化。

有空我就展开讲一讲。或者你们来补充（2022-06-08 18:01:54）

对正态分布中对应的概率的log值 (log probability) logprob 进行裁剪

对应代码是 logprob = logprob.clip(-20, 2), 有可能在 elegantrl/agent/ 里的随机策略梯度算法里找到，因为随机策略梯度算法会用到 logprob。

有空我就展开讲一讲。或者你们来补充（2022-06-08 18:01:54）

问题：On-policy 和 off-policy 的区别是什么？

若行为策略和目标策略相同，则是on-policy,若不同则为off-policy

有空我就展开讲一讲。

Ensemble Methods

MAPPO

Multi-Agent Proximal Policy Optimization (MAPPO), a variant of PPO, is specialized for multi-agent settings. Using a 1-GPU desktop, we show that MAPPO achieves surprisingly strong performance in two popular multi-agent testbeds: the particle-world environments, and the Starcraft multi-agent challenge.

	Shared network parameter for all agents ✔️

	This class is under test, we temporarily add all utils in AgentMAPPO ✔️

MAPPO achieves strong results while exhibiting comparable sample efficiency.

Parameters

Networks

	
class elegantrl.agents.net.ActorSAC(*args: Any, **kwargs: Any)

	

	
class elegantrl.agents.net.Critic(*args: Any, **kwargs: Any)

	

 _images/envs.png

_images/fin.png
Cumulative Return

2.0

18

1.6

14

12

1.0

—— ElegantRL-Podracer
— RUib
— QQQ

2020-07 2020-09 2020-11 2021-01 2021-03 2021-05

Training Time (1000s)

10

- RLIib-1.7
W ElegantRL-Podracer-1.8
W RLIib-1.8

I BB ElegantRL-Podracer-1.7

TFK

GPUs

_images/bellman.png
Q(nls,a) = R, +~ Y w(s',d)Q(nls',a’),

_images/efficiency.png
Cumulative Return

4.0 A
3.0 4
FinRL-Podracer 8 GPUs
FinRL-Podracer 16 GPUs
—— FinRL-Podracer 32 GPUs
—— FinRL-Podracer 80 GPUs
2.0 A RLIib 8 GPUs
- RLIlib 16 GPUs
- RLIlib 32 GPUs
—— RLIlib 80 GPUs
10 1 I 1 I 1 I T
0 500 1000 1500 2000 2500 3000 3500

Training Time (Seconds)

_images/isaacgym.gif

_images/learning_curve.png
Cumulative Return

4.0 A
3.0 7] /——'Av
4.0 A
3.0
2.0 A
2.0 A
1.0 4 1.0 A
0.0 1 T T T T
800 1600 2400 3200
0.0 T T T T
0 800 1600 2400 3200 3600

Training Time (Seconds)

_images/framework.png
Ranking

Fitness
scores

Ensemble

Population

Ranking

Fitness
scores

Ensemble Population

Generation T

Generation T+1

_images/framework2.png
Config Map Leaderboard

Select Update Output
D — D Age

Training Pool
Pod-1

Training files
Pod

Submit

Pod-2

Instantiat

Cloud platforms: DGX SuperPod, AWS, Alibaba cloud

_images/logo.png
ElegantRl

\\\N

_images/parallelism.png
a Worker parallelism b Learner parallelism

Action
\ 4 | 4 Ja
Pararameters - -
‘—
Env Actor _— —->< Critic Actor
Transitions
1))
Observation
d Embarrassingly parallelism
1) Population-based training 2) Ensemble methods

PBT controller

Evaluator
State

Selector

Ouput

¢ Pipeline parallelism

b b(b’

(a ’ a a

Time

3) Multi-agent

Il Multi-agent
Env

\

_images/H-term.png
SxA
((Z C(k) ..,ut+k7f(ﬂt+1))) W(Nt+k))

(c““)x”r) ...)x”): 1<c<’“> (7r®7r®-~®7r)>.

k times

Mw

E
Il

_images/LunarLander.gif

_images/BipedalWalker-v3_2.gif

_images/File_structure.png
agent.py

1
1
Control Flow: :
. . r Flow
train_and_evaluate(), train_and_evaluate_mp() :
e . i
Action ! ! | B
: Agent ! Evaluator : rEntity
P,
i i
ReplayBuffer . | explore_env() .
Trajectol Batch evaluate 1
=y = .
(s:a1) extend_buffer() | and_save() | (Device
sample_batch() ! update_net() !
| i
1 1

_images/LunarLanderTwinDelay3.gif

_images/performance1.png
Cumulative rewards

4500

4000

3500

3000

2500

2000

1500

1000

al L
¢ —— ElegantRL |
—— RLLIB |
V —— SB3
T I
0.4 0.6 0.8 1.0 1.2
#samples 1le8

Cumulative rewards

6000

5000

4000

3000

2000

1000

=
~
—— ElegantRL
n —— RLLIB 7
— SB3 |
I I I
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

#samples

le7

Cumulative rewards

12000

10000

8000

6000

4000

2000

—— ElegantRL
—— RL-Games |
—— RLLIB
— SB3
- I T T -
0.0 05 1.0 15 2.0 25 3.0
#samples 1e9

Cumulative rewards

10000

8000

6000

4000

2000

—— ElegantRL

#samples

A/“ —— RL-Games |
A —— RLLIB
—— SB3 B
: : : - .
0 1 3 4 5 6
1le9

nav.xhtml

 Table of Contents

 		
 Welcome to ElegantRL!

 		
 Hello, World!

 		
 “Net-Agent-Env-Run” File Structure

 		
 net.py

 		
 agent.py

 		
 env.py

 		
 run.py

 		
 demo.py

 		
 Run the Code

 		
 Networks: net.py

 		
 Q Net

 		
 Actor Network

 		
 Critic Network

 		
 Agents: agent.py

 		
 Agents

 		
 Replay Buffer

 		
 Environment: env.py

 		
 Main: run.py

 		
 Hyper-parameters

 		
 Train and Evaluate

 		
 Evaluator

 		
 Quickstart

 		
 Step 1: Import packages

 		
 Step 2: Specify Agent and Environment

 		
 Part 3: Specify Hyper-parameters

 		
 Step 4: Train and Evaluate the Agent

 		
 Key Concepts and Features

 		
 Cloud-native Paradigm

 		
 Why cloud-native?

 		
 A cloud-native solution

 		
 Muti-level Parallelism

 		
 Worker/Learner parallelism

 		
 Pipeline parallelism

 		
 Inherent parallelism

 		
 Example 1: LunarLanderContinuous-v2

 		
 Step 1: Install ElegantRL

 		
 Step 2: Import packages

 		
 Step 3: Get environment information

 		
 Step 4: Initialize agent and environment

 		
 Step 5: Specify hyper-parameters

 		
 Step 6: Train your agent

 		
 Example 2: BipedalWalker-v3

 		
 Step 1: Install ElegantRL

 		
 Step 2: Import packages

 		
 Step 3: Get environment information

 		
 Step 4: Initialize agent and environment

 		
 Step 5: Specify hyper-parameters

 		
 Step 6: Train your agent

 		
 How to create a VecEnv on GPUs

 		
 How to run worker parallelism: Isaac Gym

 		
 What is NVIDIA Isaac Gym?

 		
 Experiments on Ant and Humanoid

 		
 Running NVIDIA Isaac Gym in ElegantRL

 		
 How to run learner parallelism: REDQ

 		
 How to learn stably: H-term

 		
 Basic Idea

 		
 A Simple Add-on

 		
 Example: Hopper-v2

 		
 Cloud Example 1: Generational Evolution

 		
 What is a generational evolution mechanism?

 		
 Population ranking

 		
 Model ensemble

 		
 Example: stock trading

 		
 Cloud Example 2: Tournament-based Ensemble Training

 		
 What is a tournament-based ensemble training?

 		
 Comparison with generational evolution

 		
 Example: Stock Trading

 		
 Run tournament-based ensemble training in ElegantRL

 		
 DQN

 		
 Code Snippet

 		
 Parameters

 		
 AgentDQN

 		
 Networks

 		
 QNet

 		
 QNetDuel

 		
 Double DQN

 		
 Code Snippet

 		
 Parameters

 		
 Networks

 		
 QNetTwin

 		
 QNetTwinDuel

 		
 DDPG

 		
 Code Snippet

 		
 Parameters

 		
 AgentDDPG

 		
 Networks

 		
 Actor

 		
 Critic

 		
 TD3

 		
 Code Snippet

 		
 Parameters

 		
 AgentTD3

 		
 Networks

 		
 Actor

 		
 CriticTwin

 		
 SAC

 		
 Code Snippet

 		
 Parameters

 		
 AgentSAC

 		
 AgentModSAC

 		
 Networks

 		
 ActorSAC

 		
 CriticTwin

 		
 A2C

 		
 Code Snippet

 		
 Parameters

 		
 AgentA2C

 		
 AgentDiscreteA2C

 		
 Networks

 		
 ActorPPO

 		
 ActorDiscretePPO

 		
 CriticPPO

 		
 PPO

 		
 Code Snippet

 		
 Parameters

 		
 AgentPPO

 		
 AgentDiscretePPO

 		
 Networks

 		
 ActorPPO

 		
 ActorDiscretePPO

 		
 CriticPPO

 		
 REDQ

 		
 Code Snippet

 		
 Parameters

 		
 Networks

 		
 ActorSAC

 		
 Critic

 		
 MADDPG

 		
 Code Snippet

 		
 Parameters

 		
 AgentMADDPG

 		
 Networks

 		
 Actor

 		
 Critic

 		
 MATD3

 		
 Code Snippet

 		
 Parameters

 		
 Networks

 		
 Actor

 		
 CriticTwin

 		
 QMix

 		
 Code Snippet

 		
 Parameters

 		
 Networks

 		
 Critic

 		
 VDN

 		
 Code Snippet

 		
 Parameters

 		
 Networks

 		
 MAPPO

 		
 Code Snippet

 		
 Parameters

 		
 Networks

 		
 Configuration: config.py

 		
 Arguments

 		
 Environment registration

 		
 build_env()

 		
 Utils

 		
 kwargs_filter()

 		
 Run: run.py

 		
 Single-process

 		
 Multi-process

 		
 Utils

 		
 Worker: worker.py

 		
 Implementations

 		
 Replay Buffer: replay_buffer.py

 		
 Implementations

 		
 ReplayBuffer

 		
 Multiprocessing

 		
 Initialization

 		
 Utils

 		
 Evaluator: evaluator.py

 		
 Implementations

 		
 Evaluator

 		
 Utils

 		
 FAQ

 		
 Description

 		
 Outline

 		
 Section 1 Where to start?

 		
 Section 2 What to do when you experience problems?

 		
 Section 3 Most frequently asked questions related to the ElegantRL Library

 		
 Section 4 References for diving deep into Deep Reinforcement Learning (DRL)

 		
 Subsection 4.1 Open-source softwares and materials

 		
 Subsection 4.2 DRL algorithms

 		
 Subsection 4.2 Other resources

 		
 Section 5 Common issues/bugs

_images/recursive.png
Q¢ at42 -
Q(mlst,ar) = RSy 5, +7 E RUH Tp1 4+ E E RGt2 o s Mt41 g2 +

At41 At41 At42

_images/BipedalWalker-v3_1.gif

_images/samples.png
Cumulative rewards

4000

3000

2000

1000

#Samples

—— PPO + Hin eRL
—— PPO in SB3

_images/performance2.png
ewa

3000

N
I3
=
S

2000

Cumulative re

1500

1000

LN

-
\:
<

i —— ElegantRL
(. —— RLLIB
—— SB3
Il 1
2 3 4 5 6 7

Training time (hours)

Cumulative rewards

6000

5000

4000

3000

2000

1000

Training time (hours)

y —— ElegantRL
- | | —— RLLIB
— SB3 |
3 4 5 6 7 8

Cumulative rewards

12000

ol

10000
8000 - —
6000]
4000 |
—— ElegantRL
2000 4 —— RL-Games |
—— RLLIB
- —— SB3
0 |
2‘0 4‘0 60 BIO

Training time (hours)

Cumulative rewards

10000

8000

6000

4000

2000

2

7

ElegantRL
RL-Games
RLLIB

SB3

50 75 1(’)0 1%5
Training time (hours)

150

175

_images/pseudo.png
Algorithm 1 Actor-Critic DRL Algorithms with H-term
1: Input: N, K, G, B, M.L~, 7
2: Output: policy network 6
3: Randomly initialize critic net Q(s, a|#?) and actor net yi(s|¢#) with parameters #< and 6%
4: Initialize target nets Q' and y’ with parameters 62 < 9 and 6 « 6
s Initialize replay buffer D; and Dy
6:
T
8
9:

form =1,.... M do % each iteration
Receive initial observation state s1
forn=1,...Ndo % each environment step
‘Take action a,, ~ pu(-|s,)
Execute action a,,, observe reward R, and observe new state s,,1
Store transition (5., @, Ry, $,41) in Dy
end
Store trajectory (s1, ar, R, s2. ... sn.ax, Ry, sx+41) in Dy
forg=1,...Gdo % perform G updates
Sample a random minibatch of B transitions (s, a;, Ry, s;1) from Dy
Set target value i = Ry +7Q'(st1, 1 (s141/6*)[69)
Using a random batch of transitions from D; to update 99 by minimizing the loss

5
1 2
Lo =52 (v~ Qs a0?)) a3)
=
18: Update the actor policy using the sampled policy gradient:
5
1
~)Q
Vol =3 ;vuo (st,00169) Foupe (s1]6") a4
19: Sort the trajectories in D in a descending order according to the K -step return.
20: Select the top L trajectories from Dy to update 6 by minimizing
Lk
B) SE AN) as)
==

210 Update target nets:
09 709 + (1 - 7)o

. ; 16)
0 o 4 (1 7)8" e

_images/tab.png
Cumul. Annual Annual Max. Sharpe | Calmar

return return volatility | drawdown | ratio ratio
ElegantRL-podracer 104.743% | 103.591% | 35.357% | -17.187% 2.20 6.02
RLlib [2018] | 86.274% | 85.364% | 34.319% | -13.689% | 1.98 6.24
Invesco QQQ ETF 46.586% 46.146% | 23.39% | -12.749% 1.75 3.62

_images/time.png
Cumulative rewards

4000

3000 -
2000 4
1000
04 —— PPO + HineRL
—— PPOin SB3
T T T T
5000 10000 15000 20000

Training time in seconds

_static/file.png

_static/minus.png

_static/plus.png

